МИНИ ЦИФРОВЫЕ ВОЛЬТМЕТРЫ
Ещё одна маленькая победа Китай-прома над отечественным радиолюбительством произошла в области А/В-метров. Уже несколько лет как стали очень популярны мини LED индикаторы напряжения. Их уже можно увидеть во многих самодельных конструкциях и делание цифрового вольтметра / амперметра на микроконтроллере с нуля уже скорее проходит по категории "мазохизм", если конечно не требуются особые свойства или точность. Значит имеет смысл взглянуть на такие модули по-пристальнее, выбрав самые маленькие из них трех разных цветов для теста.
Создаем измеритель сопротивлений (Омметр) на базе Ардуино
Создаем измеритель сопротивлений (Омметр) для сортировки резисторов на базе Ардуино без использования цветовых кодов.
Описание работы приставки для измерения малых сопротивлений
Вся работы данной приставки построена на измерении падения напряжения на измеряемом сопротивлении при заведомо известном значении тока протекающего через него. На транзисторе VT1 создается постоянное значение тока. Его повышенная стабильность создается работой операционного усилителя, который осуществляет управление транзистором VT1.
Блок питания 0…30 В / 3A
Набор для сборки регулируемого блока питания…
Значение постоянного тока в момент измерения сопротивлений до 20 Ом -10 мА и 100 мА при измерении до 2 Ом. Для увеличения стабильности работы всей схемы, микросхема DA1, в свою очередь, запитана от стабилизатора 78L05 (DA2). Переключателем SA1 осуществляется выбор предела измерений. Кнопка SA3 нажимается только в момент осуществления измерений. Для защиты вольтметра от поломки, при включении измерителя без резистора, в схему добавлен диод VD1.
Сделать мегаомметр своими руками
Я начинаю серию статей «Конспект»,
где буду рассказывать как сам перенимаю опыт у старших. Буду стараться описывать всё максимально детально, с интересными подробностями и фишками, которыми пользуются
бывалые мастера.
Для себя определил 3 основные ветки развития
данных статей: • Электрика • Механика • Кузовные работы.
Пишите в комментарии
, о чем вы бы хотели больше узнать!
Сегодня поговорим о такой штуке как Мегаомметр
— как его сделать самому и как использовать.
Что такое Омметр? Практика измерения сопротивления омметром
Омметр – это измерительный прибор, служащий для определения величины сопротивления в электрических цепях. Сопротивление измеряется в Омах и обозначается латинской буквой R. О том, что такое Ом в популярной форме изложено в статье сайта «Закон силы тока».
ПРИСТАВКИ К МУЛЬТИМЕТРУ
На сайте уже немало конструкций самодельных приставок к старым добрым мультиметрам типа DT830 и иже с ними, но есть одна проблема – они разбросаны по разным рубрикам, поэтому решено собрать их на одой странице для пущего удобства и наглядности.
Омметр (измеритель сопротивления) на Arduino Uno
В этой статье мы рассмотрим создание омметра (измерителя сопротивления) на основе платы Arduino Uno. Принцип действия нашего омметра будет основываться на использовании делителя напряжения. Измеренное значение сопротивления будет выводиться на экран ЖК дисплея 16х2.
Модули вольтметры цифровые
Большим преимуществом блоков является относительно низкая цена и отсутствие напряжения питания, они питаются от напряжения которое одновременно измеряют. Производитель дает диапазон напряжения 2,6 – 30 В. Для начала протестируем их при разных значениях напряжения. Питание от преобразователя и литий-ионных аккумуляторов. Сравнивать будем показания с измерителем UNI-T UT210E, а также с ANENG. Модули имеют на плате небольшой потенциометр для коррекции показаний.
Бывает что настройка модуля при низком напряжении требует и коррекции на верхних рабочих диапазонах этого модуля. Для повышения точности тем потенциометром можете откалибровать показания по эталонному прибору и после процедуры рекомендуем капнуть лак для ногтей, чтобы обездвижить его. После калибровки они станут достаточно точные.
Точность этих индикаторов будет приемлемой во многих устройствах, особенно учитывая низкую цену этих модулей (можно купить за менее 100 рублей). Индикаторы автоматически переключают диапазон – после превышения значения 9,99 В отображаются только десятичные части, то есть одна цифра после запятой.
Идея проекта
Идея урока и нашего проекта по созданию омметра на Ардуино возникла после того как очередной проект завершился вот такой ситуацией:
Знакомая ситуация, неправда ли? Но я слишком ленив, чтобы проверять цветовой код на каждом резисторе, чтобы отсортировать их по величине сопротивления. И я настолько ленив, что даже использование мультиметра для меня уже слишком. Здесь и возникла идея и решение создать “ленивый омметр”.
Мы будем полагаться на уравнение делителя напряжения, чтобы получить значение неизвестного резистора, включенного последовательно с резистором с известным значением. Эта простая техника имеет только один недостаток. Чем больше два резистора различаются, тем менее точными будут наши измерения. Чтобы преодолеть это явление, нам нужно будет использовать несколько резисторов и написать код, который позволит Arduino выбрать наиболее подходящий резистор для расчета неизвестного значения.
Самодельный миллиомметр
Диапазон измеряемых на практике сопротивлений условно делят на три части: малые сопротивления (менее 10 Ом), средние сопротивления (от 10 Ом до 1 МОм) и большие сопротивления (более 1 МОм). Эти границы достаточно приблизительны и могут различаться. Наиболее распространенные аналоговые и цифровые тестеры и мультиметры предназначены, в основном, для измерения средних сопротивлений. Однако необходимость измерения малых сопротивлений (менее 1 Ом) возникает достаточно часто, например, при проверке обмоток трансформаторов, контактов реле, шунтов и др.
Как им пользоваться?
Теперь к самой проверке. Берем нашу обмотку, сперва прикладываем к концам контактов — лампа должна загореться — значит обмотка целая.
Далее прикладываем один к контакту, другой на корпус. Если лампа загорелась — значит есть пробой на корпус
. Также могут на обмотке появляются искры и начинает дымить. Долго держать так не советую.
Лечиться данная болячка подкладкой диэлектрической бумаги между корпусом и обмоткой. Это не единственный метод, но, как по мне, он весьма неплох.
Поддержите лайком и подпишитесь, если вам понравилась статья. Ну и, как всегда,
ни гвоздя ни жезла!
Структурная схема и обозначение на схемах Омметра
Измерительный прибор Омметр структурно представляет собой стрелочный или цифровой индикатор с последовательно включенной батарейкой или источником питания, как показано на фотографии.
Функцию измерения сопротивления имеют все комбинированные приборы – стрелочные тестеры и цифровые мультиметры.
На практике, прибор, который измеряет только сопротивление, используется для особых случаев, например, для измерения сопротивления изоляции при повышенном напряжении, сопротивления заземляющего контура или как образцовый, служащий для поверки других омметров боше низкой точности.
На электрических измерительных схемах омметр обозначается греческой буквой омега заключенной в окружность, как показано на фотографии.
Необходимые компоненты
- Плата Arduino Uno (купить на AliExpress).
- ЖК дисплей 16х2 (купить на AliExpress).
- Потенциометр 1 кОм (купить на AliExpress).
- Резисторы (купить на AliExpress).
- Макетная плата.
- Соединительные провода.
Подключение минивольтметров
Для некоторых отсутствие отдельного блока питания является недостатком. Но если есть отдельный источник питания, то можете подключить его отдельно. Еще одним недостатком является низкое внутреннее сопротивление, которое ограничивает использование модуля только для источников питания, зарядок и аналогичных схем. Другим недостатком является ограниченный диапазон измерения снизу.
Это измерительное устройство в схемном плане ничем не отличается от трехпроводного исполнения, для третьего провода (измерительного) имеется дополнительное поле для пайки. Достаточно снять перемычку.
Преимущество двухпроводной системы заключается в более низкой цене, которая компенсирует многие проблемы этого модуля.
Количество отображаемых сегментов увеличивает потребление тока, иногда эти колебания могут проявляться в показаниях точности.
Простейший вольтметр является двухпроводным – он питается от напряжения которое в то же время измеряет, то есть не нужен дополнительный источник питания для индикатора. И главное – после использования другого источника питания можем измерить напряжение от 0 В.
Комплектующие
Все, что вам нужно для создания этого простого омметра, который будет проверять значение сопротивления, – это набор резисторов (на данном этапе мы знаем их значения), Arduino и дисплей (я использовал OLED-дисплей I2C).
Компоненты оборудования:
-
× 1
- Резистор 10 кОм × 1
- Резистор 1 кОм × 1
- Резистор 100 Ом × 1
- Резистор 100 кОм × 1
- Резистор 1М Ом × 1
- OLED 64×128 дисплейный модуль × 1
- Перемычки × 1
Программное обеспечение:
Ручные инструменты:
- 3D-принтер (универсальный) (универсальный)
Калибровка приставки
Сперва ручки переменных резисторов R2 и R5 необходимо установить в средние положения. Далее на приставку подают напряжение 8…24 В. Постоянную величину тока, протекающего через замеряемое сопротивление, возможно установить 2-я способами.
Первый способ потребует использования высокоточного миллиамперметра. Необходимо его щупы подсоединить к зажимам измеряемого малого сопротивления. Переключатель приставки SA1 перевести в положение замера сопротивлений до 2 Ом (верхнее по схеме), а на миллиамперметре установить диапазон до 200 мА. Затем нужно нажать на кнопку SA3 и путем изменения сопротивления переменного резистора R5 выставить ток 100 мА.
Далее переключатель SA1 установить в положение до 20 Ом (нижнее по схеме), уровень же миллиамперметра выставить на 20 мА. Нажимаем кнопку SA3 и резистором R2 выставляем ток 10 мА. Повторить данный способ калибровки тока несколько раз, а затем движки переменных резисторов покрыть лаком или краской.
Второй способ калибровки заключается в применении образцовых сопротивлений на 1 и 10 Ом. Путем изменения сопротивлений резисторов на каждом диапазоне установить падение напряжения на образцовых резисторах 100 мВ.
В данной приставке можно применить операционный усилитель LM324 или К1401УД2А. Стабилизатор 78L05 можно заменить на К142ЕН5А, транзистор BD135 можно заменить на КТ815, КТ817, а диод на КД103А. Транзистор VT1 необходимо разместить на небольшом радиаторе. Для подключения измеряемого резистора малого сопротивления удобно использовать зажимы типа «крокодил». Особое внимание следует уделить способу подсоединения щупов вольтметра. Их непременно нужно подключить непосредственно к зажимам, в которых находится измеряемое сопротивление — в этом случае сопротивление проводов щупов не повлияет на результаты измерения.
МЕГАОММЕТР на Атмега328Р
Промышленный вариант мегаомметра достаточно габаритен и имеет немалый вес. Единственный достоинством этого монстра является, то что он поверен, но если вам в ремонте нужно срочно измерить сопротивление утечки, то электронный вариант более предпочтителен.
Поискав в интернете, простого устройства не нашел, единственный мегаомметр, который повторили радиолюбители был из журнала «Silicon Chip» октябрь 2009 года, но с доработанной прошивкой. Предлагаемый вашему вниманию прибор имеет габариты 100х60х25 ( корпуса были приобретены на AliExpress) и имеет вес не более 100 грамм. Устройство собрано на микроконтроллере Atmega328P. Питание осуществляется от литеевого аккумулятора и ток потребления составляет около 5 мА. Чем меньше сопротивление измеряемой цепи, тем больше ток потребления и достигает 700-800 мА, но нужно учесть, что цепи с сопротивление меньше 10 кОм встречаются редко и измерение осуществляется за несколько секунд. В устройстве применены два DC-DC преобразователя на MT3608 и MC34063. Первый используется для питания контроллера, напряжение аккумулятора повышается и стабилизируется на уровне 5 вольт, второй преобразователь на 100В, это определено тем, что в основном используется для замеров утечки в электронных устройствах, ну и сделать 500 или 1000В экономичный преобразователь очень пробематично. Сначала была идея оба преобразователя собрать на МТ3608, но после того, как я спалил 8 микросхем, было решено сделать на МС34063. Да и при 500, 1000В пришлось применять более высокоомный делитель и как следствие применение операционных усилителей Rail-To-Rail.
Подготовка Омметра для измерений
Ремонт электропроводки, электротехнических и радиотехнических изделий заключается в проверке целостности проводов и в поиске нарушения контакта в их соединениях.
В одних случаях сопротивление должно быть равно бесконечности, например сопротивление изоляции. А в других – равно нулю, например сопротивление проводов и их соединений. А в некоторых случаях равно определенной величине, например сопротивление нити накала лампочки или нагревательного элемента.
Внимание! Измерять сопротивление цепей, во избежание выхода из строя Омметра, допускается выполнять только при полном их обесточивании. Необходимо вынуть вилку из розетки или вынуть батарейки из отсека. Если в схеме есть электролитические конденсаторы большей емкости, то их необходимо разрядить, замкнув выводы конденсатора через сопротивление номиналом около 100 кОм на несколько секунд.
Как и при измерениях напряжения, перед измерением сопротивления, необходимо подготовить прибор. Для этого нужно установить переключатель прибора в положение, соответствующее минимальному измерению величины сопротивления.
Перед измерениями следует проверить работоспособность прибора, так как могут быть плохими элементы питания и Омметр может не работать. Для этого нужно соединить между собой концы щупов.
У тестера стрелка при этом должна установится точно на нулевую отметку, если не установилась, то можно покрутить ручку «Уст. 0». Если не получится, надо заменить батарейки.
Для прозвонки электрических цепей, например, при проверке электрической лампочки накаливания, можно пользоваться прибором, у которого сели батарейки и стрелка не устанавливается на 0, но хоть немного реагирует при соединении щупов. Судить о целостности цепи будет возможно по факту отклонения стрелки. Цифровые приборы должны тоже показывать нулевые показания, возможно отклонение в десятых долях омов, за счет сопротивления щупов и переходного сопротивления в контактах подключения их к клеммам прибора.
При разомкнутых концах щупов, стрелка тестера должна установится в точку, обозначенную на шкале ∞, а в цифровых приборах, мигать перегрузка или высвечиваться цифра 1 на индикаторе с левой стороны.
Омметр готов к работе. Если прикоснуться концами щупов к проводнику, то в случае его целостности, прибор покажет нулевое сопротивление, в противном случае, показания не изменятся.
В дорогих моделях мультиметров есть функция прозвонки цепей со звуковой индикацией, обозначенная в секторе измерения сопротивлений символом диода. Она очень удобна при прозвонке низкоомных цепей, например проводов кабеля витых пар для Интернета или бытовой электропроводки. Если провод цел, то прозвонка сопровождается звуковым сигналом, что освобождает от необходимости считывать показания с индикатора мультиметра.
Работа схемы
Схема омметра на основе платы Arduino Uno представлена на следующем рисунке.
В составе используемого делителя напряжения у нас один известный резистор, а второй неизвестный – сопротивление которого мы будем измерять. Напряжение с выхода делителя напряжения подается на аналоговый вход A0 платы Arduino. ЖК дисплей подключен к плате Arduino в 4-битном режиме.
Мини вольт-ампер метры
Более дорогим аналогом является индикаторы, одновременно показывающие напряжение и ток. Они чуть отличаются схемой подключения и наличием двух резисторов коррекции показаний на плате.
Форум по обсуждению материала МИНИ ЦИФРОВЫЕ ВОЛЬТМЕТРЫ
Описание нового Блютус протокола беспроводной связи – Bluetooth Mesh.
Схема гитарного комбо-усилителя с блоком эффектов на базе микросхем TDA2052, PT2399 и TL072.
Изучим теорию работы и проведём несколько опытов с 1N4148 – диодом быстрого переключения.
Как правильно выбрать резистор для LED, а также способы питания светодиодов.
Схема соединения
Следуя всему вышесказанному, мы можем построить Омметр, следуя схеме на изображении ниже.
На фото ниже показано устройство в собранном на макете виде:
Если вы используете дисплей I2C, вы также можете следовать этой схеме. Arduino Nano использует вывод A4 для SDA и A5 для SCL.
Метод непосредственной оценки
Чтоб реализовать такой метод необходимо применить омметр, схема которого ниже:
Данное устройство состоит из измерительного механизма ИМ (тип механизма магнитоэлектрический), шкала которого градуируется в омах. Также существует источник питания постоянным током U и резистор добавочный Rд. К выходным зажимам А и В производят подключения измеряемого сопротивления RX. Соответственно в цепи будет протекать ток:
Где RД, RИ, RХ – добавочный резистор и сопротивления измерительного механизма и соответственно объекта, который подлежит измерению. При этом угол отклонения стрелки прибора будет равен:
Где S1 – чувствительность токового измерителя.
Если зажимы А и В разомкнуть () , то угол отклонения стрелки прибора будет равен нулю α=0, а если их закоротить (R=0), то угол отклонения будет максимален. Поэтому у омметра шкала обратная – ноль у него справа.
Омметры довольно таки удобны в практическом применении, но они имеют довольно высокую погрешность (класс точности 2,5). Это связано с нестабильностью источника питания и неравномерностью шкалы. Дабы устранить причину неравномерности шкалы в омметрах стали использовать логометрические измерительные механизмы:
Такие приборы получили название мегомметров. Для получения источника питания в мегомметрах используют небольшие генераторы напряжением до 2500 Вольт и приводящиеся в движение вручную. В электронных же мегомметрах в качестве источника могут быть использованы батарейки или же внешний источник питания, подключаемый через специальный блок питания устройства. Мегомметры применяют для измерений больших сопротивлений, таких как сопротивление изоляции проводников. Для измерений свыше 109 Ома применяют специальные электронные устройства, которые носят название тераомметров.
Онлайн калькуляторы для определения номинала резисторов по цветовой маркировке
Иногда при проверке резистора, омметр показывает, какое-то сопротивление, но если резистор в результате перегрузок изменил свое сопротивление и оно уже не соответствует маркировке, то такой резистор применять недопустимо. Современные резисторы маркируются с помощью цветных колец. Определить номинал резистора, маркированного цветными кольцами удобней всего с помощью онлайн калькулятора.
Онлайн калькулятор для определения сопротивления резисторов
маркированных 4 цветными кольцами
Онлайн калькулятор для определения сопротивления резисторов маркированных
5 цветными кольцами
Создание корпуса
Для реального применения нашего омметра Ардуино нам нужно будет создать какой-то корпус с выводами к которым мы сможем подключать неизвестные нам резисторы, а результат будет показан на экране. Аналогичный, сделанный мною корпус, можно легко распечатать на 3D-принтере, а все детали можно закрепить клеевым пистолетом. Конечно, потребовалась некоторая пайка “известных” резисторов, чтобы всё уместилось в небольшом объеме.
Осталось одно: вставить резистор неизвестного сопротивления в небольшие отверстия и наконец-то отсортировать кучу неизвестных резисторов.
Программная реализация
Алгоритм работы прибора и сам код довольно сложны. Необходимо установить диапазон измерения, управляя входами ULN2003 (выходы Arduino D10, D11, D12), который вместе с режимом работы (определяется состоянием кнопок) учитывается в дальнейшем. Затем выполняется считывание АЦП для расчета сопротивления и отображение значения на индикаторе.
Приставка детектор радиоизлучения к мультиметру
Такое дополнение к вольтметру позволяет превратить высокочастотное излучение в постоянный ток для оценки мощности радиопередатчиков или раций.
Достаточно поднести антенну рации к антенне детектора, нажать на передачу и мультиметр покажет цифры – чем мощнее сигнал от радиопередатчика, тем больше показания на дисплее мультиметра.
Основы цветовой маркировки резисторов
Для определения сопротивления резисторов используется следующая формула:
где
A – значение цвета в первой полоске,
B – значение цвета во второй полоске,
C – значение цвета в третьей полоске,
T – значение цвета в четвертой полоске.
В следующей таблице представлены цветовые коды резисторов.
Цвет | Числовое значение цвета | Множитель (10 c ) | Допуск |
черный | 0 | 10 0 | – |
коричневый | 1 | 10 1 | ± 1% |
красный | 2 | 10 2 | ± 2% |
оранжевый | 3 | 10 3 | – |
желтый | 4 | 10 4 | – |
зеленый | 5 | 10 5 | – |
синий | 6 | 10 6 | – |
фиолетовый | 7 | 10 7 | – |
серый | 8 | 10 8 | – |
белый | 9 | 10 9 | – |
золотой | – | 10 -1 | ± 5% |
серебряный | – | 10 -2 | ± 10% |
нет полоски | – | – | ± 20% |
К примеру, если цветовые коды на резисторе Brown – Green – Red – Silver (коричневый – зеленый – красный – серебро), сопротивление резистора рассчитывается следующим образом:
Brown = 1
Green = 5
Red = 2
Silver = ± 10%
Исходя из приведенной формулы для расчета сопротивления резистора R = AB*10 c получаем:
R = 15 * 10+2
R = 1500 Ω
Четвертая полоска показывает допуск резистора, в нашем случае это ± 10%.
10% of 1500 = 150
For + 10 percent, the value is 1500 + 150 = 1650Ω
For – 10 percent, the value is 1500 -150 = 1350Ω
То есть актуальное сопротивление данного резистора будет лежать в диапазоне от 1350 до 1650 Ом.
Также в сети интернет можно найти достаточно много калькуляторов, которые исходя из цветового кода резистора рассчитают вам его сопротивление. Например, вот этот калькулятор, в котором нужно просто ввести цвета колец на резисторе и он вам выдаст сопротивление резистора.
Опасность повышенного напряжения устройства
В работе с мегаомметром существуют специфические особенности, на которые следует обращать пристальное внимание. В первую очередь это связано с повышенным напряжением прибора. Встроенный генератор обладает выходной мощностью, достаточной не только для проверки изоляции, но и для получения серьезной электротравмы. Поэтому, в соответствии с правилами электробезопасности, использовать мегаомметр могут только подготовленные и обученные специалисты, не менее чем с 3-й группой допуска.
В процессе замеров повышенное напряжение охватывает проверяемый участок, а также клеммы и соединительные провода. Защита от этого обеспечивается щупами, имеющими усиленную изолированную поверхность. Они предназначены для установки на измерительные провода. Концы щупов ограничены запретной зоной с помощью предохранительных колец. Таким образом, предупреждается касание к ним открытых частей тела.
Читать также: Карбюратор бензопилы stihl 180
Для выполнения измерения на измерительных щупах предусмотрена специальная рабочая зона, за которую можно смело браться руками. Непосредственное подключение к схеме осуществляется зажимами «крокодил» с хорошей изоляцией. Запрещается использование других типов проводов и щупов. При выполнении измерительных работ, людей не должно быть на всем проверяемом участке. Данный вопрос особенно актуален в тех случаях, когда сопротивление изоляции измеряется в длинномерных кабелях, протяженностью до нескольких километров.
Проверка электролитических конденсаторов
Различают два основных вида конденсаторов, простые и электролитические. Простые конденсаторы можно включать в схему как угодно, а электролитические только с соблюдением полярности, иначе конденсатор выйдет из строя.
На электрических схемах конденсатор обозначается двумя параллельными линиями. При обозначении электролитического конденсатора обязательно обозначается его полярность подключения знаком «+».
Электролитические конденсаторы низко надежны, и являются самой распространенной причиной отказа электронных блоков изделий. Вздутый конденсатор в блоке питания компьютера или другого устройства, не редкая картина.
Тестером или мультиметром в режиме измерения сопротивления можно успешно проверять исправность электролитических конденсаторов, или как еще говорят, прозвонить. Конденсатор нужно выпаять из печатной платы и обязательно разрядить, чтобы не повредить прибор. Для этого нужно закоротить его выводы металлическим предметом, например пинцетом. Для проверки конденсатора переключатель на приборе нужно установить в режим измерения сопротивления в диапазоне сотен килоом или мегаом.
Далее нужно, прикоснуться щупами к выводам конденсатора. В момент касания стрелка прибора должна резко отклониться по шкале и медленно вернуться в положение бесконечного сопротивления. Скорость отклонения стрелки зависит от величины емкости конденсатора. Чем емкость конденсатора больше, тем медленнее будет возвращаться на место стрелка. Цифровой прибор (мультиметр) при прикосновении щупов к выводам конденсатора, сначала покажет маленькое сопротивление, а затем все возрастающее вплоть до сотен мегом.
Если поведение приборов отличается от выше описанного, например сопротивление конденсатора составляет ноль Ом или бесконечность, то в первом случае имеется пробой между обмотками конденсатора, а во втором, обрыв. Такой конденсатор неисправен и применению не подлежит.
Определение сопротивления резистора с помощью омметра на Arduino
Принцип работы рассматриваемого нами омметра основан на использовании делителя напряжения, напряжение на выходе которого рассчитывается по следующей формуле:
Vout = Vin * R2 / (R1 + R2 )
Из этой формулы мы можем выразить значение сопротивления R2:
R2 = Vout * R1 / (Vin – Vout)
где R1 – известный резистор,
R2 – неизвестный резистор,
Vin – напряжение на выходе 5V платы Arduino,
Vout – падение напряжения на резисторе R2 по отношению к земле.
Мы в нашем проекте выбрали значение сопротивления R1 равное 3,3 кОм, но вы можете выбрать другое значение этого сопротивления.
То есть если мы будем знать падение напряжения на неизвестном резисторе (Vout), то мы можем сравнительно просто определить значение сопротивления неизвестного резистора R2. Мы будем считывать значение этого напряжения (Vout) с помощью аналогового контакта A0 платы Arduino и конвертировать значение с выхода АЦП (аналогового-цифрового преобразователя) данного контакта (0-1023) в цифровое значение напряжения.
Задать вопрос автору статьи, оставить комментарий
Александр, здравствуйте!
При выпайке одного из выводов резистор поломался пополам. Подскажите пожалуйста номинал сопротивления, цифры на нем такие есть ОМЛТ 12К 5% 7к4.
И просто интересно, поломанный резистор если спаять, он получается будет рабочий?
Здравствуйте, Роман!
Номинал резистора 12 кОм. Даже номинал переломленного резистора без маркировки можно определить с помощью мультиметра.
Резистор представляет собой керамическую трубку, на который нанесен резистивный слой.
Щупы тестера прикладываются к выводу и на торце нащупывается этот слой по показанию прибора. Так же поступают со второй половинкой. В сумме получится номинал целого резистора.
Спаять сломанный резистор не получится, так как резистивный слой представляет собой тонкий слой резистивного материала.
Исходный код программы
Полный код программы приведен в конце статьи, здесь же сначала рассмотрим его наиболее важные фрагменты.
В программе мы должны сообщить плате Arduino, к каким ее контактам подключен ЖК дисплей. Контакт RS ЖК дисплея подключен к цифровому контакту 2 платы Arduino, а контакт Enable – к цифровому контакту 3 платы Arduino. Контакты данных ЖК дисплея (D4-D7) подключены к цифровым контактам 4,5,6,7 платы Arduino.
ли со статьей или есть что добавить?