Окисление алюминия в воде

Содержание

Окисление алюминия на воздухе

Алюминий имеет отрицательный окислительно-восстановительный потенциал (–1,66 В), а магний, его важный легирующий элемент, имеет даже более низкий потенциал (–2,38 В). Поэтому, как и большинство других металлов, алюминий встречается в природе только как очень стабильный оксид. Химически это означает наиболее стабильное состояние на самом низком энергетическом уровне. При электролизе металл вынуждают отделиться от кислорода путем подъема его энергетического потенциала. При контакте с кислородом алюминий стремится вернуться к более низкому энергетическому уровню в виде оксида алюминия. Из-за его высокого сродства к кислороду эта реакция происходит мгновенно.

Химическая активность

Алюминий характеризуется высокой химической активностью: энергия образования его соединений с кислородом, галоидами, серой и углеродом очень велика. В ряду напряжений он занимает место среди наиболее электроотрицательных элементов (нормальный потенциал его около 1,3 В).

Обладая большим сродством к кислороду, алюминий на воздухе теряет блеск, покрываясь тонкой, но очень прочной окисной пленкой. Электронно-микроскопические исследования показывают, что пленка окиси алюминия на поверхности твердого алюминия сплошная и беспористая. Она защищает алюминий от дальнейшего окисления и обусловливает его высокие антикоррозионные свойства. Толщина пленки окиси алюминия на поверхности металлического алюминия ∼2·10 -4 мм.

Интенсивность окисления алюминия зависит от температуры, степени его раздробленности и примесей других металлов, присутствующих в нем.

Алюминий, нагретый на воздухе до температуры, близкой к точке его плавления (660°С), продолжает окисляться, причем степень окисления его при этой температуре пропорциональна квадратному корню из продолжительности окисления. Окисление алюминия существенно ускоряется при температурах выше его точки плавления, мелко же раздробленный металл при нагревании на воздухе энергично сгорает.

Присутствие в алюминии примесей магния, кальция натрия, кремния и меди усиливает его окисление. Особенно легко окисляются при нагревании алюминиево-магниевые сплавы, на поверхности которых образуются рыхлые окисные пленки. В присутствии следов ртути пленка окиси алюминия на поверхности твердого алюминия нарушается, и весь металл полностью окисляется.

Окислился алюминий что делать

Окисляется алюминий в атмосфере быстро, но на небольшую глубину. Этому препятствует защитная окисная пленка. Окисление ускоряется выше температуры плавления алюминия. Если нарушается целостность оксидной пленки, алюминий начинает корродировать. Причинами истончения его защитного слоя могут стать различные факторы, начиная с воздействия кислот, щелочей и заканчивая механическим повреждением.

Коррозия алюминия – саморазрушение металла под воздействием окружающей среды. По механизму протекания выделяют:

  • Химическую коррозию – происходит в газовой среде без участия воды.

  • Электрохимическую коррозию – протекает во влажных средах.

  • Газовое разрушение – но сопровождает нагрев и горячую обработку алюминия. В результате взаимодействия кислорода с металлами возникает плотная окисная пленка. Вот почему алюминий не ржавеет, как и все цветные металлы.

На видео: электрохимическая коррозия металлов и способы защиты.



Проверенные способы, чем убрать окись с изделий из алюминия в домашних условиях

Коррозия алюминия – разрушение металла под влиянием окружающей среды.

Для реакции Al3+ +3e → Al стандартный электродный потенциал алюминия составляет -1,66 В.

Температура плавления алюминия — 660 °C.

Плотность алюминия — 2,6989 г/см3 (при нормальных условиях).

Алюминий, хоть и является активным металлом, отличается достаточно хорошими коррозионными свойствами. Это можно объяснить способностью пассивироваться во многих агрессивных средах.

Коррозионная стойкость алюминия зависит от многих факторов: чистоты металла, коррозионной среды, концентрации агрессивных примесей в среде, температуры и т.д. Сильное влияние оказывает рН растворов. Оксид алюминия на поверхности металла образуется только в интервале рН от 3 до 9!

Очень сильно влияет на коррозионную стойкость Al его чистота. Для изготовления химических агрегатов, оборудования используют только металл высокой чистоты (без примесей), например алюминий марки АВ1 и АВ2.

Коррозия алюминия не наблюдается только в тех средах, где на поверхности металла образуется защитная оксидная пленка.

При нагревании алюминий может реагировать с некоторыми неметаллами:

2Al + N2 → 2AlN – взаимодействие алюминия и азота с образованием нитрида алюминия;

4Al + 3С → Al4С3 – реакция взаимодействия алюминия с углеродом с образованием карбида алюминия;

2Al + 3S → Al2S3 – взаимодействие алюминия и серы с образованием сульфида алюминия.

Алюминий и его реакция с водой

[Deposit Photos]

Впервые алюминий был получен лишь в начале XIX века. Cделал это физик Ганс Эрстед. Свой эксперимент он проводил с амальгамой калия, хлоридом алюминия и ртутью.

Кстати, название этого серебристого материала произошло от латинского слова «квасцы», потому что именно из них добывается этот элемент.

Квасцы [Wikimedia]

Квасцы – это природные минералы на основе металлов, которые объединяют в своем составе соли серной кислоты.

Раньше алюминий считался драгоценным металлом и стоил на порядок дороже, чем золото. Объяснялось это тем, что металл было довольно сложно отделить от примесей. Так что позволить себе украшения из алюминия могли только богатые и влиятельные люди.

Японское украшение из алюминия [Wikimedia]

Но в 1886 году Чарльз Холл придумал метод по добыче алюминия в промышленном масштабе, что резко удешевило этот металл и позволило применять его в металлургическом производстве. Промышленный метод заключался в электролизе расплава криолита, в котором растворен оксид алюминия.

Алюминий — очень востребованный металл, ведь именно из него изготавливаются многие вещи, которыми человек пользуется в быту.

International Institute of Care to Buildings

Низкая плотность и механическая прочность в сочетании с удовлетворительной стойкостью к коррозии делают алюминий привлекательным конструкционным материалом, который широко используется в строительстве. Однако с химической точки зрения алюминий — один из наиболее реакционноспособных металлов, который активно взаимодействует не только с кислотами и щелочами, но и с водой! Кажущееся противоречие очень просто объясняется: под воздействием кислорода (или других окислителей) поверхность металлического алюминия покрывается прочной, химически устойчивой оксидной пленкой, предохраняющей металл от разрушения. Это явление называется пассивацией. Металл пассивен в том случае, когда при взаимодействии с потенциальным источником коррозии он не подвергается изменениям, и активен тогда, когда агрессивное вещество его разрушает.

Напомним, что коррозией называется процесс разрушения металлов и их сплавов в результате химического или электрохимического воздействия окружающей среды.

Металл, стойкий к коррозии в одних условиях, может разрушаться в других. Так, например, алюминий стоек к коррозии, вызываемой жидким топливом, и не стоек к действию натриевой щелочи (так называемое явление пассивности и активности).

Окись алюминия создает химически инертный защитный слой, толщина которого составляет 20—100Å. Алюминий, поверхность которого очищена от защитной пленки, может реагировать с водой, выделяя при этом водород. Под влиянием окислителей поверхность алюминия пассивируется, поэтому кислород, содержащийся в воздухе или растворенный в воде, повышает его коррозионную стойкость.

Коррозионная стойкость алюминия в значительной степени зависит от содержания примесей других металлов. Как известно, при контакте двух металлов, погруженных в среду электролита, образуется гальваническая пара, где более активный металл становится анодом, а менее активный — катодом. В результате электрохимической реакции анод разрушается. Большинство примесей (за исключением металлов, более активных, чем алюминий) играют роль катода по отношению к алюминию, т.е. способствуют его разрушению.

По этой причине алюминий высокой чистоты отличается более высокой коррозионной стойкостью, чем технический металл, который, в свою очередь, более устойчив к коррозии, чем сплавы алюминия. Кроме того, коррозионная стойкость алюминия зависит от характеристик окружающей среды и от реакций, вызываемых этой средой в алюминии.

Коррозионная стойкость

Одним из самых важных качеств алюминия является его исключительно высокая стойкость к коррозии, значительно возрастающая с повышением степени его чистоты.
Алюминий обладает высокой коррозионной стойкостью к морской воде, уксусной, лимонной, винной и другим органическим кислотам. Он практически не взаимодействует с концентрированной азотной и 100 %-ной серной кислотами, но быстро разрушается в разбавленной азотной кислоте, а также в разбавленной серной кислоте при концентрациях более 10 % (максимальная растворимость наблюдается в 80 %-ной серной кислоте). Быстро растворяется алюминий также в растворах щелочей, соляной, плавиковой и бромистоводородной кислотах; слабо взаимодействует с борной кислотой. Алюминий устойчив в нейтральных растворах солей магния и натрия, слабо влияют на алюминий сернистый газ, аммиак и сероводород.
Химическая стойкость алюминия обусловливается, как указывалось выше, образованием на его поверхности тончайшей, но плотной беспористой пленки окиси алюминия. Сцепление окисной пленки с алюминием в местах нахождения примесей в металле значительно уменьшается, и эти места уязвимы для коррозии. У алюминия с ничтожным содержанием примесей окисная пленка имеет очень прочное сцепление с поверхностью. Поэтому алюминий высокой и особой чистоты чрезвычайно стоек против действия многих химически активных реагентов.
Коррозионная стойкость алюминия различной степени чистоты может быть охарактеризована потерями массы испытуемого образца металла или объема водорода, выделяющегося с единицы поверхности металла при обработке его в течение 1ч соляной кислотой определенной концентрации.

Из приведенных данных следует, что коррозионная стойкость электролитически рафинированного алюминия (99,99%) в 3–15 раз выше, чем алюминия технической чистоты.
Дальнейшее повышение чистоты алюминия еще в большей степени увеличивает его коррозионую стойкость. Например, поверхность электролитически рафинированного алюминия (99,998 %) через 20 сут выдерживания в 22 %-ной соляной кислоте покрылась глубокими трещинками. Поверхность же более чистого алюминия (очищенного зонной плавкой и подвергнутого электрополировке) после выдерживания в соляной кислоте в течение 100 суток сохранила свой первоначальный блеск. Установлено, что для алюминия чистотой 99,99 % и выше скорость коррозии зависит главным образом от содержания в нем меди. Например, при содержании выше 2·10 -3 % Cu алюминиевый лист толщиной 1,5мм при выдержке в 20 %-ной соляной кислоте в течение недели прокорродировал насквозь; в тех же условиях алюминий, содержащий от 0,9 до 3·10 -4 Сu , полностью разрушился только через две недели.

Виды коррозии

Окисляется алюминий в атмосфере быстро, но на небольшую глубину. Этому препятствует защитная окисная пленка. Окисление ускоряется выше температуры плавления алюминия. Если нарушается целостность оксидной пленки, алюминий начинает корродировать. Причинами истончения его защитного слоя могут стать различные факторы, начиная с воздействия кислот, щелочей и заканчивая механическим повреждением.

Коррозия алюминия – саморазрушение металла под воздействием окружающей среды. По механизму протекания выделяют:

  • Химическую коррозию – происходит в газовой среде без участия воды.

  • Электрохимическую коррозию – протекает во влажных средах.

  • Газовое разрушение – но сопровождает нагрев и горячую обработку алюминия. В результате взаимодействия кислорода с металлами возникает плотная окисная пленка. Вот почему алюминий не ржавеет, как и все цветные металлы.

На видео: электрохимическая коррозия металлов и способы защиты.

защита алюминия от коррозиизащита от коррозии

Толщина оксидной пленки на твердом алюминии

Толщина естественной оксидной пленки довольно тонкая – от 1 до 3 нм в зависимости от сплава и температуре образования оксида (до 300 °С). На рисунке 1 показано постепенное увеличение толщины оксидной пленки на чистом алюминии при ее образовании при температуре от комнатной до 400-500 °С. Затем происходит разрыв в скорости окисления и резкое увеличение толщины оксидной пленки до 20 нм. Причиной этого считается переход от аморфной структуры оксида алюминия к его кристаллической структуре. Именно поэтому при сушке измельченного алюминиевого лома и обжиге с него органических покрытий его не нагревают выше 400 °, чтобы избежать чрезмерного окисления.

В твердом состоянии алюминия оксид алюминия играет положительную роль, так как оксидная пленка имеет форму γ-Al2O3 и толщину несколько нанометров. Она надежно изолирует поверхность алюминия и останавливает дальнейшее окисление. При постоянной температуре толщина оксидной пленки растет сначала очень быстро, но затем скорость роста замедляется и сводится практически к нулю.

Влияние примесей на коррозионную стойкость

  • Fe+Si . С увеличением содержания суммы примесей Fe+Si коррозионная стойкость алюминия (в 5%-ном растворе НС1) с очень малым содержанием меди ( 31,5 г/(м 2 ·ч) , для металла технической чистоты марки А7 — всего лишь 0,24— 1,07 г/(м 2 ·ч) , а для алюминия марки А6— 1,19– 1,64 г/(м 2 ·ч) .
    Исследования позволили установить отрицательное влияние примеси железа на коррозионную стойкость алюминия, которая уменьшается с увеличением содержания железа. Увеличение содержания кремния от 0,0003 до 1–2% практически не сказывается на коррозионной стойкости металла. Алюминий с очень низким содержанием железа (0,003%) в 5%-ном растворе НС1 корродирует очень медленно [0,10– 0,157 г/(м 2 ·ч) ], независимо от увеличения содержания в нем кремния от 0,003 до 0,5–1%. Даже при большем содержании кремния (до 2%) скорость коррозии алюминия невелика.
  • Ti . 0,01–0,19% Ti заметно не влияют на коррозионную стойкость алюминия этих марок в 5%-ном растворе НС1.
  • Be . Бериллий в малых количествах (0,05–0,5%) незначительно снижает коррозионную стойкость алюминия высокой и технической чистоты в 5%-ном растворе НС1.
  • Nb . Ниобий же, введенный в такой алюминий, более ощутимо снижает его коррозионную стойкость. Если в присутствии 0,03–0,09% Nb это снижение невелико, то при более высоком содержании ниобия (0,14–0,19%) оно уже значительно.
  • Ga, Re . Весьма отрицательно влияют на стойкость алюминия против коррозии небольшие добавки галлия и рения. Для алюминия стандартной марки А7, содержащего 0,5% Ga, скорость коррозии достигает 120 г/(м 2 ·ч), а содержащего 0,3% Re — 250 г/(м 2 ·ч) .

Для сравнения укажем, что скорость коррозии бессортного алюминия, богатого железом (1%Fe+0,03%Si), составляет около 100 г/(м 2 ·ч) .

Материалы естественного происхождения

Не действуют на алюминий:

  • Каменная соль.
  • Продукты нефтеперегонки: бензин, керосин, парафин, масла, смолы.
  • Воск.
  • Каучук.
  • Эфирные масла.
  • Каменный уголь, антрацит, бурый уголь.
  • Целлюлоза.
  • Белки.
  • Природный гипс.
  • Особо чистые виды нефти.

Действуют на алюминий:

  • Нефть, а точнее — содержащиеся в ней загрязнения, в основном, вода с растворенными в ней солями, которые в результате гидролиза образуют кислоты.
  • Дубильные вещества.
  • Средства для импрегнации древесины.
  • Глина.

Физические свойства алюминия

Алюминий — достаточно легкий металл серебристого цвета, который может образовывать сплавы с большинством металлов, особенно с медью, магнием и кремнием. Также он весьма пластичен, его без труда можно превратить в тонкую пластинку или же фольгу. Температура плавления алюминия = 660 °C, а температура кипения — 2470 °C.

Проявление коррозии алюминия

Выделяют следующие виды коррозии алюминия и его сплавов:

  • Поверхностная – наиболее распространенная, приносит наименьший вред, легко заметна и быстро поддается устранению.
  • Локальная – разрушения наблюдаются в виде углублений и пятен. Опасный вид коррозии в силу своей незаметности. Встречается в труднодоступных частях и узлах металлических конструкций.
  • Нитеподобная, филигрань – наблюдается под покрытиями из органики, на ослабленных местах поверхности.

Любой из видов коррозии конструкций из алюминия является причиной разрушения.

Это сокращает срок эксплуатации изделий. В гальванической паре алюминий может корродировать, при этом он защищает другой металл.

Естественных антикоррозийных свойств алюминия и его сплавов недостаточно. Поэтому механизмы, агрегаты, конструкции и изделия из металла нуждаются в дополнительной защите.

Коррозия алюминия на воздухе (атмосферная коррозия алюминия)

Алюминий при взаимодействии с воздухом переходит в пассивное состояние. При соприкосновении чистого металла с воздухом на поверхности алюминия мгновенно появляется тонкая защитная пленка оксида алюминия. Далее рост пленки замедляется. Формула оксида алюминия – Al2O3 либо Al2O3•H2O.

Реакция взаимодействия алюминия с кислородом:

Толщина этой оксидной пленки составляет от 5 до 100 нм (в зависимости от условий эксплуатации). Оксид алюминия обладает хорошим сцеплением с поверхностью, удовлетворяет условию сплошности оксидных пленок. При хранении на складе, толщина оксида алюминия на поверхности металла составляет около 0,01 – 0,02 мкм. При взаимодействии с сухим кислородом – 0,02 – 0,04 мкм. При термической обработке алюминия толщина оксидной пленки может достигать 0,1 мкм.

Общая коррозия

Когда поверхностная оксидная пленка растворяется в коррозионной среде, как это происходит в растворах фосфорной кислоты или щелочи, то идет равномерное растворение алюминия с постоянной скоростью. Если оно сопровождается выделением тепла , как при растворении в щелочи , то температура раствора и скорость коррозии возрастают. Общая коррозия зависит от конкретных ионов, которые находятся в растворе, их концентрации и от температуры. Общая коррозия может носить характер легкого травления с образованием матовой поверхности или быстрого растворения металла. Общую коррозию можно оценить по потере массы или толщины образца.

Электрохимическая коррозия

В техническом алюминии (или в его сплавах) содержатся примеси металлов в виде отдельных вкраплений (магний, титан, железо, марганец и др.)

Благодаря наличию таких вкраплений сплав, погруженный в электролит, представляет собой совокупность большого количества микроскопических гальванических очагов. В результате электрохимической реакции, возникающей в этих очагах, металл, выступающий в роли анода (а в нашем случае это основной компонент сплава, алюминий), растворяется, в то время как на микрокатодах выделяется водород (рис. 2).

Рис. 2

Такие микроисточники коррозии по своей природе являются обычными гальваническими элементами и отличаются:

Процесс электрохимической коррозии не всегда является результатом возникновения микроскопических гальванических элементов. В ряде случаев очаги коррозии имеют "видимые" (макроскопические) размеры.

Механизм электромеханического коррозионного разрушения для разной величины поверхности катода (сталь) и анода (алюминий) представлен на рис. 3.

Рис. 3

Окисление алюминиевой стружки

С особенностью роста оксидной пленки, которая показана на рисунке 1, связан интересный феномен. Он происходит при хранении алюминиевых отходов в виде стружки. Этот вид алюминиевого лома возникает при механической обработке алюминия и поступает на переплав в основном в виде токарной и сверлильной стружки. Эта стружка имеет после механической обработке свежую, чистую поверхность, которая сразу же начинает окисляться. Так как стружка перед переплавом хранится в прессованных пакетах, то, казалось бы, окисляться должен только наружный их слой, а внутренние слои пакета сохраняться без окисления. Однако по изменению веса пакета было установлено, что окисление его в целом продолжается в течение длительного времени. Причина этого в том, что в пакете есть щели и полости, через которые воздух медленно, но уверено проникает во внутренние его слои. Большинство отдельных стружек очень тонкие, и оксидный слой, хотя и еще более тонкий, дает значительную долю в общем весе пакета. Поэтому при длительном хранении стружки потери металла возникают просто ниоткуда. Вывод из этого может быть только один – стружку необходимо переплавлять немедленно после ее поступления.

Местная (локальная) коррозия

Если окржающая среда не растворяет оксидную пленку на поверхности алюминия или алюминиевого сплава, то коррозия проявляется в виде мелких локализованных точеч- точечных поражений. Местная коррозия имеет электрохимический механизм и обусловлена разницей коррозионных потенциалов в локальном элементе, образующемся на поверхности или в глубине металла из-за его неоднородности. Обычно эта разница в поверхностном слое связана с присутствием катодных микросоставляющих, которыми могут быть нерастворимые частицы интерметаллидов или отдельные элементы; чаще всего таковыми являются CuAl2, FeAl3 и кремний. Коррозия может быть вызвана и неоднородностью коррозионной среды, различным содержанием кислорода по объему. Гораздо реже коррозия возникает в связи с присутствием на поверхности ионов тяжелых металлов, например меди или железа. Опасность образования локального элемента возрастает с увеличением электрической проводимости рабочей среды. Другой электрохимической причиной местной коррозии является наличие блуждающих токов на поверхности алюминия. Единственный тип местной коррозии, который не имеет электрохимической природы,—это фреттинг-коррозия, разновидность сухого окисления. Почти во всех случаях местной коррозии происходит взаимодействие с водой по реакции

Продуктом коррозии, как правило, является гидраргиллит или тригидрат оксида алюминия (бейрит). Местная коррозия обычно не происходит в очень чистой воде при температуре окружающей среды или в отсутствие кислорода, однако в более токопроводящих растворах она может происходить из-за наличия таких ионов, как хлориды или сульфаты.

Особенности алюминия

Алюминий, металл с окрашенной в серебристый цвет поверхностью, имеет ряд характерных особенностей:

— обладает высокой плотностью, поэтому изделия из алюминия прочные и не подвергаются механическим повреждениям;

— высокая теплопроводность, этим качеством он схож с серебром, золотом и медью;

— устойчив к образованию коррозий, алюминий никогда не поржавеет, но на его поверхности может образоваться окись;

Способы борьбы с коррозией

Защита от коррозии производится несколькими способами:

  • Механическое лакокрасочное защитное покрытие.
  • Электрохимическая защита – покрытие более активными металлами;
  • Покрытие алюминия порошковыми составами, так называемый процесс аллюминирования;
  • Высоковольтное анодирование;
  • Химическое оксидирование;
  • Применение ингибиторов коррозии.

Удельная поверхность алюминиевого лома

Потеря алюминия из-за его окисления при переплаве в печи какой-нибудь загрузки лома пропорциональна удельной площади этого лома. Удельная площадь выражается соотношением

где m – общая масса партии лома, A – общая площадь поверхности всех кусочков лома, составляющих эту загрузку.

Удельная площадь поверхности алюминиевых отходов является критическим параметром. Ее величина увеличивается с уменьшением размеров частиц лома. Так, у куба со стороной 10 см площадь поверхности равна 600 кв. см, а у эквивалентных по массе 1000 кубиков со стороной 1 см – в 10 раз больше. Поэтому скорость окисления этих кубиков будет в 10 раз больше, чем большого куба.

Ржавеет ли алюминий: свойства материала, причины коррозии и способы защиты

Алюминий является материалом, который люди часто используют в промышленности и для собственных нужд. Подобный металл отличается гибкостью, а также устойчивостью к внешним воздействиям. Он не токсичен и безопасен для здоровья человека. Серебряный цвет позволяет применять металл для различных целей. Это промышленность и бытовая сфера.

При работе в промышленности люди часто задаются вопросом, ржавеет ли алюминий. Всем известно, что если на листе появляется повреждение, то может развиться коррозия. Следует узнать, почему алюминий ржавеет иначе, чем другие сплавы. Необходимо выяснить причины, по которым он подвергается коррозии. Обо всем этом и не только — читайте в нашей сегодняшней статье.

Механическое покрытие

Как защитить алюминий от коррозии? Чаще всего применяют механический способ – нанесение слоя краски.

Покройте краской изделие и вы убедитесь в действенности этого способа. Окрашивание бывает мокрым и сухим, или порошковым. Эти технологии усовершенствуются. При мокром окрашивании лакокрасочные слои наносят после защиты алюминия составом, содержащим соединения цинка и стронция. Металлическую основу тщательно подготавливают: защищают, шлифуют, сушат. Грунт наносят поэтапно.

Когда растворитель из грунтовочной смеси полностью исчезнет, поверхность можно покрывать изолирующим составом: масляным или глифталиевым лаком.

Специальные составы помогают остановить коррозию и защищают алюминиевые конструкции от химикатов, бензина, различного вида масел. Выбор покрытия зависит от условий последующей эксплуатации металлического изделия:

  • молотковые – применяют для получения конструкций различных цветовых оттенков, используемых в декоре;
  • бакелитовые – наносят под высоким давлением, заполняя микротрещины и поры.

Порошковое окрашивание требует тщательной очистки поверхности от жира и различных отложений. Это достигается погружением в щелочные или кислотные растворы с добавлением смачивателей. Далее на алюминиевые конструкции наносится слой хроматных, фосфатных, циркониевых или титановых соединений. После этого он не будет окисляться.

После просушки материала на окислившийся участок наносят защитный полимер. Чаще всего используются полиэфиры, стойкие к механическому, химическому и термическому воздействию. Применяют полимеризованный уретан, эпоксидные и акриловые порошки.

Зависимость интенсивности окисления жидкого алюминия от температуры

С ростом температуры расплава скорость окисления алюминия возрастает. Она довольно медленно возрастает вплоть до интервала температуры от 760 до 780 °С, а затем следует резкое увеличение скорости окисления, как это показано на рисунке 2. Нагрев алюминиевого расплава выше этих температур приводит к повышенным потерям алюминия от его окисления. Эти потери часто называют «угар алюминия

Свойства

Давайте изучим характеристики алюминия. Описываемый металл плавится при температуре 659 градусов Цельсия. Плотность вещества составляет 2,69*103 кг/см3. Алюминий относят в группу активных металлов. Устойчивость к коррозионным процессам зависит от ряда факторов:

Оксидирование алюминия

Оксидирование алюминия протекает при постоянном токе под напряжением 250 В. Наращивание защитной пленки происходит при комнатной температуре с водяным охлаждением. Не требуется импульсного источника. Пленки получаются плотными и прочными в течение 45-60 минут.

На плотность и цвет оксидного покрытия влияет температура электролита:

  • пониженная температура образует плотную пленку яркого цвета;
  • повышенная – формирует рыхлую пленку, требующую дальнейшей окраски.

Образовать защиту алюминия от коррозии можно электрохимической реакцией. Процесс разделен на несколько этапов:

1. На стадии подготовки алюминиевое изделие обезжиривают, погружая его в раствор щавелевой кислоты.

2. После промывания водой опускают в щелочной раствор, чтобы удалить неравномерно образовавшийся оксидный слой.

3. Для дополнительной окраски алюминиевые изделия погружают в соответствующие растворы солей. Чтобы заполнить образовавшиеся поры, металлический материал обрабатывают паром.

4. Затем изделие подвергают сушке. Анодное оксидирование может проводиться с применением переменного тока.

Для защиты от коррозии применяют химическое оксидирование – менее затратное, не требующее специального электрического оборудования и квалификации исполнителей. Используется несложный химический состав.

В процессе алюминирования полученная оксидная пленка толщиной в 3 мкм имеет салатный цвет, обладает высокими электроизоляционными свойствами, не пориста, не окрашивается.

Коррозия алюминия возникает вследствие находящихся рядом металлов, которые окислились. Предотвращению этот процесса способствует изоляция. Это могут быть прокладки из резины, битума, паронита. При покрытии ржавчиной применяются лак и другие изолирующие материалы. Других способов избавиться от этой проблемы пока нет.

Три способа удалить окисную плёнку с поверхности алюминия (1 видео)

Материалы для обработки алюминия (22 фото)

Химическая стойкость сплавов алюминия

В дистиллированной воде алюминий проявляет очень хорошие показатели стойкости к коррозии при любой температуре.

Дождевая вода может разрушать алюминий, если в атмосфере содержится значительное количество промышленных газов. Растворяясь в воде, это газы (SO2, NO2, хлороводород и т.д.) образуют кислоты, разрушающие алюминий. Поэтому во избежание коррозии алюминиевые конструкции следует проектировать так, чтобы свести до минимума скапливание дождевой воды на поверхности металла.

Водопроводная вода действует на алюминий по-разному, в зависимости от содержащихся в ней примесей. В кислых или щелочных водах алюминий может подвергаться коррозии. Процесс коррозии ускоряют ионы хлора или тяжелых металлов, содержащиеся в водопроводной воде.

Промышленные сточные воды вызывают очень сильную коррозию, которую ускоряют ионы тяжелых металлов.

Водород, азот и благородные газы (гелий, аргон, неон, криптон, ксенон) не действуют на алюминий даже при повышенных температурах.

Галогены (хлор, бром, йод, фтор) в отсутствие влаги не действуют на алюминий. При взаимодействии с водой они образуют кислоты, агрессивные по отношению к алюминию.

Сухие хлороводород, бромоводород, йодоводород, фтороводород не действуют на алюминий. Но водные растворы этих газов — кислоты, активно разрушающие алюминий.

Сероводород не разрушает алюминий при температуре до 500°С.

Двуокись серы в отсутствие водяного пара не разрушает алюминий (до 400°С), хотя при наличии влаги вызывает коррозию. Аналогично действует и триокись серы.

Аммиак в газообразном состоянии не действует на алюминий даже при высоких температурах.

Оксид углерода СО разрушает алюминий только при температуре свыше 550°С.

Углекислый газ ведет себя аналогично СО. В воде углекислый газ образует угольную кислоту, не вызывающую значительных коррозионных разрушений.

Чем очистить алюминий от продуктов коррозии и окиси

Давайте посмотрим, как убирать коррозию, окисления, нагар, налет и прочие загрязнения:

  • Для борьбы с темными пятнами пойдет кислое молоко, кефир, а также рассол. Любым из этих средств заливают дно и оставляют на 12 часов. Затем нужно обильно промыть изделие под проточной холодной водой. Далее все потемнения отмоются обычной тряпкой.
  • Нагар хорошо убирает кислое яблоко, можно использовать и лимон. Для этого его разрезают пополам и трут половиной поверхность, которую нужно очистить. За счет воздействия кислот нагар можно очень быстро удалить.
  • Удалять окись можно с помощью соли и теплой воды. Раствор готовят в одинаковых пропорциях. Температура воды может быть любой, самое главное, чтобы соль в ней полностью растворилась. Далее при помощи этого раствора и губки можно очищать поверхность.

Уксус – эффективное средство

Данный метод ухода за алюминиевой посудой и изделиями достаточно простой и эффективный. Нужно взять уксус или уксусную эссенцию. В жидкости смачивают салфетки и очищают загрязненный участок. Уксус легко уберет окиси разной сложности.

Если грязь не поддается, то обрабатываете деталь в кипящем уксусе. Жидкость доводят до кипения, а затем остужают. Когда уксус остынет, то можно заняться очисткой обрабатываемой детали. Если загрязнение сильное, то изделие кипятят в уксусе.

Сода и клей против застарелых окислов

Чистить окислы и нагар можно при помощи этих веществ. В домашних условиях можно приготовить очень сильное средство, которое не только сделает алюминиевую деталь чистой, но и придаст ей новый вид. В емкость наливают горячую воду, а затем в нее добавляют пищевую соду и клей. Ингредиенты берут в следующих пропорциях – на 10 л воды нужно 100 г соды и 100 г канцелярского клея. Все компоненты нужно тщательно перемешать.

Также нужен небольшой брусок обычного мыла, натрите его на терке и добавьте в воду с клеем и содой. Обрабатываемую деталь кладут в готовый раствор на 2-3 час. Затем, когда пройдет время, нужно промыть изделие в воде и насухо вытереть салфетками. Этот способ позволит удалить окисную плёнку.

Как алюминий защищен от коррозии?

Сплавы других металлов подвержены появлению ржавчины. Она проявляется достаточно быстро. Если создать для алюминия определенные условия, то он не будет разрушаться долгие годы. Для защиты алюминия от коррозии на нем образуется специальная пленка. Она ложится тонким слоем, который составляет от 5 до 10 миллиметров. Состоит подобное покрытие из оксида алюминия.

Пленка является прочной и дает металлу дополнительную защиту от внешних негативных воздействий. Благодаря такому слою воздух и влага не попадают в структуру материала. Если целостность оксидного покрытия нарушается, то начинается процесс коррозии алюминия. Металл теряет свои свойства.

Неорганические соединения

Алюминий не стоек к действию кислот. Исключение составляют концентрированные азотная и серная кислоты — их окислительные свойства настолько сильны, что при контакте с алюминием на его поверхности образуется прочный слой оксида алюминия, препятствующий дальнейшему разрушению металла (поэтому концентрированную азотную или серную кислоту перевозят в алюминиевых цистернах). Разбавленная азотная или серная кислота — более слабый окислитель — энергично реагирует с алюминием.

В кислотах алюминий растворяется тем хуже, чем меньше содержит дополнительных примесей. Следует помнить, что анодное окисление не защищает от воздействия кислот, поскольку они разрушают слой Al2O3. Химическая активность кислот увеличивается с ростом температуры. Например, с возрастанием температуры на 10°С скорость коррозии удваивается. Увеличение концентрации кислоты, как правило, увеличивает скорость коррозии (концентрированные серная и азотная кислоты — исключение).

Соляная кислота вызывает сильную коррозию. Действие этой кислоты нельзя ослабить добавлением ингибиторов.

Фтороводородная кислота оказывает самое сильное влияние на алюминий. Даже непродолжительное взаимодействие разбавленной кислоты ведет к полному растворению алюминия.

Кислородсодержащие кислоты хлора (HClO4, HClO3, HClO) вызывают сильную коррозию алюминия.

Серная кислота вызывает равномерную коррозию алюминия, интенсивность которой зависит от концентрации. Разбавленная кислота средней концентрации при комнатной температуре отличается умеренной агрессивностью. Наиболее агрессивна кислота концентрации 80%. Некоторые вещества, входящие в состав алюминиевых сплавов, а также ионы, содержащиеся в воде (особенно фториды и хлориды), усиливают действие серной кислоты.

Сернистая кислота вызывает локальную коррозию алюминия.

Сера и халькогены (селен и теллур) на алюминий не действуют.

Фосфорная кислота разрушает алюминий умеренно или сильно (в зависимости от концентрации).

Мышьяк при комнатной температуре не действует на алюминий.

Мышьяковая кислота (H3AsO4) и окись мышьяка сильно разрушают алюминий, а мышьяковистая кислота (H3AsO3) без нагревания на него не влияет.

Азотистая кислота (HNO2) при комнатной температуре не действует на алюминий.

Азотная кислота (HNO3) воздействует на алюминий по-разному, в зависимости от концентрации. Разбавленные растворы интенсивно разрушают алюминий. В концентрированных растворах вследствие окислительных процессов поверхность алюминия пассивируется и коррозия замедляется. Наиболее сильную коррозию вызывает кислота концентрацией 10-60%. Действие азотной кислоты приводит к равномерной коррозии. С увеличением чистоты алюминия возрастает его стойкость к коррозии. Наличие в составе слава примесей меди, кремния, магния усиливает воздействие азотной кислоты.

Физические и химические параметры элемента

Алюминий — химический элемент с атомным номером 13, представляющий собой металл серебристо-белого цвета. Его название происходит от латинского слова alumen — квасцы. Практически во всех соединениях химический элемент проявляет валентность 3.

  • Кристаллизация химического элемента происходит в кубической гранецентрированной решетке. Металл может окисляться при комнатной температуре. При этом его поверхность покрывается тонкой оксидной пленкой, выполняющей защитную функцию.
  • Температура плавления химически чистого алюминия 660 °C, кипения — 2450 °C. Плотность металла при нормальных условиях составляет 2,6989 г/см3.
  • На воздухе алюминий окисляется с образованием тонкой пленки, которая препятствует дальнейшему реагированию с металлом. Такое защитное соединение формируется, если поместить алюминий в концентрат азотной кислоты.
  • Металл активно взаимодействует с соляной кислотой. При реакции со щелочами сначала разрушается защитный оксидированный слой, а затем происходит реакция с образованием алюминатов натрия, калия (в зависимости от вида щелочного соединения).
  • При нагревании химический элемент реагирует с бромом и хлором. При взаимодействии с серой образуется сульфид алюминия, который легко растворяется в воде. С водородом металл реагирует косвенно путем искусственного синтеза органических соединений. В результате образуется сильнейший восстановитель — полимерный гидрид алюминия.
  • При сжигании порошкообразного металла на воздухе образуется тугоплавкий порошок оксида химического элемента, соединение которого обладает высокой прочностью. Это свойство используется для восстановления металлов из их окислов.
  • В лабораторных условиях соединения алюминия, содержащие гидроксильную группу OH, можно получить в результате обменных реакций или за счет добавления в раствор соды или аммиака. Соединение алюминия оседает на дно в виде гелеобразного осадка.

Причины появления коррозии

Когда встает вопрос о том, ржавеет ли алюминий, необходимо задуматься о причинах, приводящих к коррозии. Различные внешние факторы могут ускорять этот процесс. Причины появления ржавчины на алюминии могут быть следующими:

Что такое электрохимическая коррозия и может ли она быть на листе алюминия?

Чаще всего появление электрохимической коррозии провоцируют гальванические пары. Повреждение появляется в месте соединения двух разных сплавов. В таком случае ржавчина будет явно бросаться в глаза. Важным моментом является то, что портится только один металл, а второй является источником запуска коррозионного процесса. Чтобы не бояться электрохимической коррозии, нужно использовать магниевый сплав. Специалисты из-за электрохимической ржавчины не рекомендуют использовать обычное железо при контакте с кузовом из алюминия.

Продукция синтетической химии и промышленные продукты

Не действуют на алюминий:

  • Синтетические смолы.
  • Инсектецидные средства (за исключением арсената натрия).
  • Косметические препараты.
  • Лаки.
  • Органические красители.
  • Некоторые клеи, не содержащие солей тяжелых металлов.

Действуют на алюминий умеренно или сильно:

  • Чистящие средства.
  • Моющие средства.
  • Некоторые косметические препараты (кислые или щелочные).
  • Одеколон.
  • Неорганические красители.
  • Чернила и тушь.
  • Клеи.
  • Продукты сгорания органических веществ, в особенности серо- и азотсодержащих.

Какие факторы могут замедлить процесс?

Существует ряд факторов, которые замедляют процессы коррозии алюминия, а некоторые из них останавливают подобное явление. Выделяют следующие:

При каких условиях начинается разрушение алюминия на воздухе

Некоторые интересуются, ржавеет ли алюминий на воздухе. Если будет разрушена оксидная пленка на верхнем слое металла, то может начаться процесс коррозии. В результате может проявиться ржавчина. Рост пленки, как правило, замедляется на свежем воздухе. Следует помнить, что оксид алюминия отличается хорошей сцепкой с поверхностью металла.

Если лист хранится на складе, то пленка будет от 0,01 до 0,02 мкм. Если металл соприкасается с сухим кислородом, то толщина оксидной пленки на поверхности будет от 0,02 до 0,04 мкм. Если алюминий подвергают термической обработке, то толщина пленки изменяется. Она будет равна 0,1 мкм.

Считается, что алюминий обладает достаточной стойкостью, чтобы использовать его на свежем воздухе. Например, его применяют в сельской местности, а также в удаленных промышленных зонах.

Правила эксплуатации алюминиевой посуды

Сохранить первозданный вид кухонной утвари, уберечь ее от деформации и серьезных загрязнений под силу каждой хозяйке. Для этого соблюдайте основные рекомендации по эксплуатации и уходу за алюминиевыми изделиями:

  1. Не используйте посуду для засаливания огурцов, капусты и других продуктов. Кислота вступает в реакцию с металлом, что провоцирует выделение отравляющих веществ, опасных для здоровья.
  2. Алюминиевая утварь не подходит для ежедневной эксплуатации из-за быстрого изнашивания.
  3. Не храните в алюминиевой посуде остатки еды.
  4. Избегайте длительного воздействия высоких температур на металл. Во время готовки используйте средний или слабый огонь.
  5. Для очистки не применяйте порошок, наждачную бумагу, другие абразивные инструменты.

Грамотная эксплуатация и правильный уход помогут сохранить чистоту и блеск алюминиевых изделий

Грамотная эксплуатация и правильный уход помогут сохранить чистоту и блеск алюминиевых изделий

Алюминиевые изделия отличаются легкостью, многофункциональностью, простотой в эксплуатации. При правильном использовании и уходе кухонная утварь, раковина или деталь прослужат долго, выполняя свое основное предназначение.

Как вода воздействует на описываемый металл?

Коррозия алюминия в воде может наступить от повреждения верхнего слоя и защитной пленки. Высокая температура жидкости способствует скорейшему разрушению металла. Если алюминий поместить в пресную воду, то коррозионные процессы практически не будут наблюдаться. Если повысить температуру воды, то изменений можно не заметить. Когда жидкость нагревается до температуры 80 градусов и выше, то металл начинает портиться.

Скорость коррозии алюминия увеличивается, если в воду попадает щелочь. Описываемый металл обладает повышенной чувствительностью к соли. Именно поэтому морская вода для него губительна. Чтобы использовать этот металл в морской воде, необходимо в жидкость добавлять магний или кремний. Если использовать лист алюминия, в составе которого есть медь, то коррозия сплава будет протекать гораздо быстрее, чем у чистого вещества.

Опасна ли для алюминия серная кислота?

Люди интересуются, ржавеет ли алюминий в серной кислоте. Подобная кислота является потенциально опасной для сплавов. Она обладает ярко выраженными окислительными свойствами. Они разрушают оксидную пленку и ускоряют коррозию металла.

Интересным моментом является то, что концентрированная холодная сера не влияет на алюминий. Если алюминий нагреть, тогда могут начаться процессы коррозии металла. В таком случае появляется соль, ее называют сульфатом алюминия. Она растворима в воде.

Стойкость алюминия в азотной кислоте

Описываемый металл отличается повышенной стойкостью при попадании в раствор азотной кислоты. Его часто синтезируют для того, чтобы получить концентрированную азотную кислоту.

Какие вещества не оказывают воздействия на алюминий?

Не стоит бояться коррозионных процессов, если алюминий соприкоснется с лимонной кислотой. Не изменят свойства его сплава также яблочная кислота и фруктовый сок. Масляная слабо влияет на сплавы, в состав которых входит алюминий.

Будет ли происходить коррозия металла при контакте со щелочью?

Не стоит допускать контакта алюминия с различными щелочами. Они легко разрушают защитную пленку на верхнем слое. Металл вступает в реакцию с водой, после чего начинает выделяться водород. Процесс коррозии происходит в данном случае быстро. Ртуть и медь также пагубно влияют за защитный слой алюминия.

Итак, мы выяснили, ржавеет ли алюминий. Как видите, не всегда он имеет хорошую коррозионную защиту.

Оцените статью
Рейтинг автора
4,8
Материал подготовил
Егор Новиков
Наш эксперт
Написано статей
127
А как считаете Вы?
Напишите в комментариях, что вы думаете – согласны
ли со статьей или есть что добавить?
Добавить комментарий