Как сложить 2 дроби

Обыкновенные дроби

Доля — это каждая равная часть, из суммы которых состоит целый предмет.

Для примера возьмем два мандарина. Когда мы их почистим, то получим в каждом мандарине разное количество долек или долей. В одном может быть 6, а в другом — целых 9. Размеры долей у каждого мандарина тоже разные.

У каждой доли есть свое название: оно зависит от количества долей в конкретном предмете. Если в мандарите шесть долей — каждая из них будет определяться, как одна шестая от целого.

  • Половина — одна вторая доля предмета или 1/2.
  • Треть — одна третья доля предмета или 1/3.
  • Четверть — одна четвертая доля предмета или 1/4.

Понятие доли можно применить не только к предметам, но и величинам. Так, например, картина занимает четверть стены — при этом ее ширина треть метра.

Чтобы быстрее запомнить соотношения частей и целого, можно использовать наглядную табличку:

Как сложить 2 дроби

Калькулятор дробей выполнит основные арифметические действия с дробями и смешанными числами.

Если целая часть заполнена, калькулятор приведет смешанное число в неправильную дробь и выполнит операцию.

Заполните поля калькулятора чтобы найти сумму, разность, произведение и отношение дробей.

Основные операции с дробями

Сложение и вычитание

Чтобы сложить дроби с разными знаменателями необходимо: привести дробные части к наименьшему общему знаменателю; затем сложить их числители. Рассмотрим на примере как сложить две дроби с разными знаменателями.

Пример Сложить дроби дробь одна восьмаяи дробь пять шестых

результат сложения дробей одна восьмая плюс дробь пять шестых.

Наименьшее общее кратное знаменателей (8 и 6) равно 24.

Для нахождения разности дробей необходимо: привести дробные части к наименьшему общему знаменателю; затем выполнить вычитание числителей.

Пример Найти разность дробей дробь девять шестнадцатыхи семть двадцатых

разность дробей девять шестнадцатых минус семь двадцатых.

Общее кратное знаменателей НОК(16, 20)=80. Для вычисления наименьшего общего кратного можно воспользоваться калькулятором. Калькулятор вычислит НОК автоматически.

Умножение и деление

Для умножения двух дробей нужно: перемножить их числители и знаменатели правило умножения дробей.

Пример Найти произведение дробей дробь семь восемнадцатыхи дробь три четвертых

умножение дробей: семь восьмых на три четвертых.

Чтобы разделить дробь на другую нужно: умножить первую дробь на дробь, обратную второй: деление дробей.

Пример Разделить дробь дробь четыре пятыхна дробь три десятых

деление дробей четыре пятых на три десятых.

Приведение к общему знаменателю

Чтобы совершать операции с дробями часто требуется привести дроби к общему знаменателю. Рассмотрим процесс приведения двух дробей дробь три восьмыхи пять двенадцатыхк наименьшему общему знаменателю :

  • 1 Находим наименьшее общее кратное знаменателей: НОК(8, 12)=24. Число 24 является наименьшим общим знаменателем двух дробей, приведем обе дроби к данному знаменателю. Любые две дроби можно привести к одинаковому знаменателю.
  • 2 Вычисляем дополнительный множитель первой дроби вычисляем дополнительный множитель для дроби 3/8. Умножаем числитель и знаменатель на дополнительный множитель 3, получаем дробь дробь 3/8 преобразуем в 9/24 путем умножения на 3.
  • 3 Вычислим дополнительный множитель второй дроби вычисляем дополнительный множитель для дроби 5/12. Умножаем числитель и знаменатель на дополнительный множитель 2, получаем дробь дробь 5/12 преобразуем в 10/24 путем умножения на 2.
  • 4 В результате получим дроби дробь 9/24и дробь 10/24с одинаковым знаменателем равным 24.
Пример Сравнить дроби дробь семь восемнадцатыхи дробь три четвертых

Для сравнения дробей приведем их к общему знаменателю и сравним их числители. Воспользуемся шагами описанными выше и найдем наименьшее общее кратное знаменателей дробей и далее преобразуем:

сравнение дробей: 7/18 и 3/4.

НОК(18, 4)=36, дополнительный множитель первой дроби дополнительный множитель дроби 7/18, доп. множитель второй дроби дополнительный множитель дроби 3/4.

Основное свойство дроби

Если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число, то получится равная ей дробь.

Сложение и вычитание обыкновенных дробей. Приведение дробей к одному знаменателю. Понятие о НОК

  • Сложение и вычитание дробей с одинаковыми знаменателями
  • Сложение и вычитание дробей с разными знаменателями
  • Понятие о НОК
  • Приведение дробей к одному знаменателю
  • Как сложить целое число и дробь

Как сложить смешанные дроби с разными знаменателями

Дроби – это величины, заменяющие собой операцию деления. Дело в том, что не всегда есть возможность использовать округленные значения. Если вычисление конечное, то можно воспользоваться и округленным значением, но если впереди еще несколько десятков вычислений, то округление в каждом из примеров приведет к потере нескольких единиц.

В обычных математических вычислениях это не критично, но если человек считает миллионы рублей? Что делать тогда? Заменить операцию дробью и продолжить вычисления уже с ней. Это общепринятый способ точных вычислений, которому учат во всех школах мира.

Сложение дробей: теория и практика

Дробь — одна из форм представления числа в математике. Это запись, в которой a и b являются числами или выражениями. Существует два формата записи:

  • обыкновенный вид — 1/2 или a/b,
  • десятичный вид — 0,5.

Над чертой принято писать делимое, которое является числителем, а под чертой всегда находится делитель, который называют знаменателем. Черта между ними означает деление.

Дроби бывают двух видов:

  1. Числовые — состоят из чисел, например, 5/9 или (1,5 – 0,2)/15.
  2. Алгебраические — состоят из переменных, например, (x + y)/(x – y). В этом случае значение дроби зависит от данных значений букв.

Дробь называют правильной, когда ее числитель меньше знаменателя. Например, 3/7 и 31/45.

Неправильной — ту, у которой числитель больше знаменателя или равен ему. Например, 21/4. Такое число является смешанным и читается, как пять целых одна четвертая, а записывается — 5 14.

1 Сложение и вычитание дробей с одинаковыми знаменателями

Чтобы сложить дроби с одинаковыми знаменателями, надо сложить их числители, а знаменатель оставить тот же, например:

др24

Чтобы вычесть дроби с одинаковыми знаменателями, надо из числителя первой дроби вычесть числитель второй дроби, а знаменатель оставить тот же, например:

др25

Чтобы сложить смешанные дроби, надо отдельно сложить их целые части, а затем сложить их дробные части, и записать результат смешанной дробью,

Если при сложении дробных частей получилась неправильная дробь, выделяем из нее целую часть и прибавляем ее к целой части, например:

др28

Почему дроби можно складывать?

Дети часто задумываются, почему можно складывать дроби?

Знаменатель это заменитель делителя из операции. То есть:

А чтобы сложить дроби, нужно применить сочетательное свойство деления:

Для использования этого свойства нужен одинаковый знаменатель. То есть, для применения свойства нужно привести дроби к одинаковому знаменателю.

Основные свойства дробей

1. Дробь не имеет значения, при условии, если делитель равен нулю.

2. Дробь равняется нулю в том случае, если числитель равен нулю, а знаменатель отличен от нуля.

3. Равными называются такие a/b и c/d, если:

  • a * d = b * c.

4. Если числитель и знаменатель умножить или разделить на одно и то же натуральное число, то получится равная ей дробь.

Сложение путём перевода в обыкновенные дроби

При сложении десятичных дробей путём их перевода в обыкновенные дроби следует руководствоваться следующим правилом:

  1. Нужно сравнить количество десятичных знаков у десятичных дробей.
  2. Если количество десятичных знаков одинаково, то переводим десятичные дроби в обыкновенные и складываем их.
  3. Если количество десятичных знаков различно, то сначала нужно уравнять их количество, приписав справа к десятичной дроби с меньшим количеством знаков необходимое число нулей.

Пример 1. Выполнить сложение чисел 3,1 и 4,7.

Решение. Так как количество десятичных знаков одинаково, то просто переводим десятичные дроби в обыкновенные и складываем. Десятичной дроби 3,1 соответствует обыкновенная дробь , а десятичной дроби 4,7 — обыкновенная дробь , значит:

сложение десятичных дробей

Пример 2. Сложить числа 3,45 и 7,368.

Решение. Так как количество десятичных знаков различно, то сначала уравняем их количество, приписав справа к дроби 3,45 цифру 0. Десятичной дроби 3,450 соответствует обыкновенная дробь сложение дробей с целыми числами, а десятичной дроби 7,368 — обыкновенная дробь урок сложение десятичных дробей, значит:

правило сложения десятичных дробей

Как устроена обыкновенная дробь

Обыкновенная дробь — это запись вида m/n, где m и n любые натуральные числа.

Такие дроби записываются с помощью двух натуральных чисел и горизонтальной черты, которая называется чертой дроби. Иногда ставится не горизонтальная черта, а косая.

Числитель обыкновенной дроби m/n — это натуральное число m, которое стоит над чертой. Числитель это делимое — то, что мы делим.

Знаменатель обыкновенной дроби m/n — натуральное число n, которое стоит под чертой. Знаменатель это делитель — то, на сколько делим.

Черта между числителем и знаменателем — символ деления.

Равные обыкновенные дроби — обыкновенные дроби a/b и c/d, для которых справедливо равенство: a * d = b * c. Пример равных дробей: 1/2 и 2/4, так как 1 * 4 = 2 * 2.

Неравные обыкновенные дроби — обыкновенные дроби a/b и c/d, для которых равенство: a * d = b * c не является верным.

2 Сложение и вычитание дробей с разными знаменателями.

Для того, чтобы сложить или вычесть дроби с разными знаменателями, нужно сначала привести их к одному знаменателю, а дальше действовать, как указано в начале этой статьи. Общий знаменатель нескольких дробей — это НОК (наименьшее общее кратное). Для числителя каждой из дробей находятся дополнительные множители с помощью деления НОК на знаменатель этой дроби. Мы рассмотрим пример позже, после того, как разберемся, что же такое НОК.

Сложение смешанных чисел (смешанных дробей).

Правила сложения смешанных дробей:

  • приводим дробные части этих чисел к наименьшему общему знаменателю (НОЗ);
  • отдельно складываем целые части и отдельно дробные части, складываем результаты;
  • если при сложении дробных частей получили неправильную дробь, выделяем целую часть из этой дроби и прибавляем ее к полученной целой части;
  • сокращаем полученную дробь.

Пример сложения смешанной дроби :

Дроби. Сложение дробей.

Сложение десятичных дробей столбиком

Десятичные дроби можно складывать столбиком.

При сложении десятичных дробей столбиком следует руководствоваться следующим правилом:

  1. Записать десятичные дроби в столбик так, чтобы цифры одинаковых разрядов стояли друг под другом. Запятые десятичных дробей так же должны стоять друг под другом.
  2. Если количество десятичных знаков у дробей различно, для удобства можно уравнять их число, приписав справа к десятичной дроби с меньшим количеством десятичных знаков необходимое число нулей.
  3. Не обращая внимание на запятые, выполнить сложение так, как выполняется сложение столбиком натуральных чисел.
  4. В полученной сумме поставить запятую так, чтобы она стояла под запятыми слагаемых.

Пример 1. Сложить числа 3,1 и 4,7.

Решение. Выполняем сложение так, как выполняется сложение столбиком натуральных чисел, не обращая внимание на запятые:

сложение десятичных дробей в столбик

Пример 2. Сложить 3,45 и 7,368.

Решение. Выполняем сложение так, как выполняется сложение столбиком натуральных чисел. Для удобства, можно уравнять количество десятичных знаков в складываемых дробях:

сложение десятичных дробей 6 класс

Как складывать смешанные дроби

Смешанные дроби только выглядят страшно. Складывать и вычитать их на самом деле достаточно просто.

Что такое смешанная дробь? Это дробь, где целая часть выделена в отдельное число, которое приписывается перед числом. Например:

В первую очередь, как и при вычитании обычных дробей, нужно обратить внимание на знаменатель. Если у дробных частей одинаковые знаменатели, то можно вычесть дробные части и целые части отдельно. Если же знаменатели разные, то порядок действий будет следующим:

  • Сделать смешанную дробь неправильной. Для этого нужно целую часть умножить на знаменатель и прибавить это число к числителю. Так мы получим дробь, которая была до выделения целой части из числа.
  • Второй шаг это приведение дробей к одинаковому знаменателю. Знаменатель является наибольшим общим кратным для двух исходных знаменателей.
  • После приведения знаменателей к одному значению, числители записываются под одним знаком дроби, и выполняется действие.

Чаще прочих складываются десятичные смешанные дроби. Десятичные дроби с целой частью так же считаются смешанными. Их складывают по тем же правилам, что и обычные целые числа. Для сложения нужно добавить нужное количество знаков после запятой, чтобы в обоих числах было -одинаковое количество знаков. Для примера выполним вычитание:

Сложение смешанных чисел или смешанных дробей.

Сложение смешанных дробей происходит по закону сложения.

У смешанных дробей складываем целые части с целыми и дробные части с дробными.

Если дробные части смешанных чисел имеют одинаковые знаменатели, то числители складываем, а знаменатель остается тот же.

Сложим смешанные числа (3frac) и (1frac).

Если дробные части смешанных чисел имею разные знаменатели, то находим общий знаменатель.

Выполним сложение смешанных чисел (7frac) и (2frac).

Знаменатель разный, поэтому нужно найти общий знаменатель, он равен 24. Умножим первую дробь (7frac) на дополнительный множитель 3, а вторую дробь (2frac) на 4.

Вопросы по теме:
Как складывать дроби?
Ответ: сначала надо определиться к какому типу относиться выражение: у дробей одинаковые знаменатели, разные знаменатели или смешанные дроби. В зависимости от типа выражения переходим к алгоритму решения.

Как решать дроби с разными знаменателями?
Ответ: необходимо найти общий знаменатель, а дальше по правилу сложения дробей с одинаковыми знаменателями.

Как решать смешанные дроби?
Ответ: складываем целые части с целыми и дробные части с дробными.

Пример №1:
Может ли сумма двух правильных дробей в результате получить правильную дробь? Неправильную дробь? Приведите примеры.

Дробь (frac) это правильная дробь, она является результатом суммы двух правильных дробей (frac) и (frac).

Дробь (frac) является неправильной дроби, она получилась в результате суммы правильных дробей (frac) и (frac).

Ответ: на оба вопроса ответ да.

Пример №2:
Сложите дроби: а) (frac + frac) б) (frac + frac).

Пример №3:
Запишите смешанную дробь в виде суммы натурального числа и правильной дроби: а) (1frac) б) (5frac)

Пример №4:
Вычислите сумму: а) (8frac + 2frac) б) (2frac + frac) в) (7frac + 3frac)

а) (8frac + 2frac = (8 + 2) + (frac + frac) = 10 + frac = 10frac)

Задача №1:
За обедам съели (frac) от торта, а вечером за ужином съели (frac). Как вы думаете торт полностью съели или нет?

Решение:
Знаменатель дроби равен 11, он указывает на сколько частей разделили торт. В обед съели 8 кусочков торта из 11. За ужином съели 3 кусочка торта из 11. Сложим 8 + 3 = 11, съели кусочков торта из 11, то есть весь торт.

3 Наименьшее общее кратное (НОК)

Наименьшее общее кратное двух чисел (НОК) — это наименьшее натуральное число, которое делится на оба эти числа без остатка. Иногда НОК можно подобрать устно, но чаще, особенно при работе с большими числами, приходится находить НОК письменно, с помощью следующего алгоритма:

Для того, чтобы найти НОК нескольких чисел, нужно:

  1. Разложить эти числа на простые множители
  2. Взять самое большое разложение, и записать эти числа в виде произведения
  3. Выделить в других разложениях числа, которые не встречаются в самом большом разложении (или встречаются в нем меньшее число раз), и добавить их к произведению.
  4. Перемножить все числа в произведении, это и будет НОК.

Например, найдем НОК чисел 28 и 21:

др22

Что мы узнали?

Мы поговорили о том, что такое дробь. Узнали, почему можно вычитать дроби и откуда берется условие одинаковых знаменателей, необходимое при вычитании. Обсудили, как вычитать дроби с выделенной целой частью и отметили, что особых различий от вычитания обычных дробей нет. Рассмотрели примеры вычитания смешанных дробей с разными знаменателями.

Сложение десятичной дроби с натуральным числом

Правило сложения десятичных дробей с натуральными числами:

Чтобы сложить десятичную дробь и натуральное число, нужно данное натуральное число прибавить к целой части десятичной дроби, а дробную часть оставить без изменений.

Пример. Вычислить сумму 14,3 и 29.

Решение. Для удобства сложения, любое натуральное число можно представить в виде десятичной дроби. Для этого нужно поставить запятую после разряда единиц и приписать после запятой нужное количество нулей. Сложение выполняется по правилу сложения десятичных дробей столбиком:

Сложение десятичной дроби с натуральным числом.

4 Приведение дробей к одному знаменателю

Вернемся к сложению дробей с разными знаменателями.

Когда мы приводим дроби к одинаковому знаменателю, равному НОК обоих знаменателей, мы должны умножить числители этих дробей на дополнительные множители. Найти их можно, разделив НОК на знаменатель соответствующей дроби, например:

др29

Таким образом, чтобы привести дроби к одному показателю, нужно сначала найти НОК (то есть наименьшее число, которое делится на оба знаменателя) знаменателей этих дробей, затем поставить дополнительные множители к числителям дробей. Найти их можно, разделив общий знаменатель (НОК) на знаменатель соответствующей дроби. Затем нужно умножить числитель каждой дроби на дополнительный множитель, а знаменателем поставить НОК.

Действия с дробями

С дробями можно выполнять те же действия, что и с обычными числами: складывать, вычитать, умножать и делить. А еще дроби можно сокращать и сравнивать между собой. Давайте попробуем.

5 Как сложить целое число и дробь

Для того, чтобы сложить целое число и дробь, нужно просто добавить это число перед дробью, при этом получится смешанная дробь, например:

др30

Если мы складываем целое число и смешанную дробь, мы прибавляем это число к целой части дроби, например:

Сравнение дробей

Из двух дробей с одинаковыми знаменателями больше та, у которой числитель больше.

Сравним 1/5 и 4/5. Как рассуждаем:

  1. В обеих дробях знаменатель равен 5.
  2. В первой дроби числитель равен 1, во второй дроби равен 4.

Из двух дробей с одинаковыми числителями больше та, у которой знаменатель меньше.

Сравним 1/2 и 1/8. Как рассуждаем:

Представим, что у нас есть торт. Так как знаменатель первой дроби равен 2, то делим торт на две части и забираем себе одну, то есть половину торта.

Знаменатель второй дроби равен 8, делим торт на восемь частей и забираем крохотный кусочек. Половина торта больше больше маленького кусочка.

Таким образом 1/2 > 1/8.

1/2 больше 1/8

Чтобы сравнить дроби с разными знаменателями, нужно привести дроби к общему знаменателю. А после приведения дробей к общему знаменателю, можно применить правило сравнения дробей с одинаковыми знаменателями.

Пример. Сравнить 2/7 и 1/14.

  1. Приведем дроби к общему знаменателю:
    Общий знаменатель
  2. Сравним дроби с одинаковыми знаменателями:
    Сравнение дробей

Важно запомнить: любая неправильная дробь больше любой правильной. Потому что неправильная дробь всегда больше или равна 1, а правильная дробь всегда меньше 1.

Неправильная и правильная дроби

Чтобы сравнить дроби с разными числителями и знаменателями, нужно:

  • привести дроби к наименьшему общему знаменателю (НОЗ);
  • сравнить полученные дроби.

Чтобы привести дроби к наименьшему общему знаменателю, нужно:

  1. Найти наименьшее общее кратное (НОК) знаменателей дробей, которое станет их общим знаменателем.
  2. Разделить общий знаменатель на знаменатель данных дробей, то есть найти для каждой дроби дополнительный множитель.
  3. Умножить числитель и знаменатель каждой дроби на ее дополнительный множитель.

Сокращение дробей

Сокращение дроби — это деление числителя и знаменателя дроби на одно и то же натуральное число. Сократить дробь значит сделать ее короче и проще для восприятия. Например, дробь 1/3 выглядит намного проще и красивее, чем 27/81.

Сокращение дроби выглядит так: зачеркивают числитель и знаменатель, а рядом записывают результаты деления числителя и знаменателя на одно и то же число.

До и после сокращения

В этом примере делим обе части дроби на двойку.

Сравнение дробей

Можно никуда не спешить и сокращать дроби последовательно, в несколько действий.

Сравнение дробей

Сложение и вычитание дробей

При сложении и вычитании дробей с одинаковыми знаменателями к числителю первой дроби прибавляют числитель второй дроби (из числителя первой вычитают числитель второй) и оставляют тот же знаменатель.

Не забудьте проверить, можно ли сократить дробь и выделить целую часть.

Сложение и вычитание дробей в буквенном выражении

При сложении и вычитании дробей с разными знаменателями нужно найти наименьший общий знаменатель, сложить или вычесть полученные дроби (используем предыдущее правило).

    Найдем наименьшее общее кратное для определения единого делителя. Пример

Для этого запишем в столбик числа, которые в сумме дают значения делителей. Далее перемножаем полученное и получаем НОК.

Запись в столбик

НОК (15, 18) = 3 * 2 * 3 * 5 = 90

Полученные числа запишем справа сверху над числителем.

  • если делимое больше делителя, нужно преобразовать в смешанное число;
  • если есть что сократить, нужно выполнить сокращение. Пример результата

Ход решения одной строкой:

Ход решения одной строкой

Сложение или вычитание смешанных чисел можно привести к отдельному сложению их целых частей и дробных частей. Для этого нужно действовать поэтапно:

  1. Сложить целые части.
    Сложение дробей
    Сложение дробей
  2. Сложить дробные части.
    Сложение дробей

Необходимо приводить к общему, если знаменатели разные. Для этого воспользуемся знаниями из предыдущего примера.

Если при сложении дробных частей получилась неправильная дробь, нужно выделить ее целую часть и прибавить к полученной ранее целой части.

Умножение и деление дробей

Произведение двух дробей равно дроби, числитель которой равен произведению числителей, а знаменатель — произведению знаменателей:

Умножение дробей

Не забываем про сокращение. Это может облегчить вычисления.

Сокращение дробей

Чтобы умножить два смешанных числа, надо:

  1. преобразовать смешанные дроби в неправильные;
  2. перемножить числители и знаменатели дробей;
  3. сократить полученную дробь;
  4. если получилась неправильная дробь, преобразовать в смешанную.

Чтобы разделить дробь на дробь нужно выполнить следующую последовательность действий:

  • числитель первой умножить на знаменатель второй, результат произведения записать в числитель новой дроби;
  • знаменатель первой умножить на числитель второй, результат произведения записать в знаменатель новой дроби.

Другими словами это правило звучит так: чтобы разделить одну дробь на другую, надо первую умножить на обратную от второй.

Числа, произведение которых равно 1, называют взаимно обратными.

Как делить дроби с разными знаменателями? На самом деле одинаковые или разные знаменатели у дробей — неважно, потому что все дроби делятся по правилу, описанному выше.

Для деления смешанных чисел необходимо:

  • представить числа в виде неправильных дробей;
  • разделить то, что получилось друг на друга. Результат

Сложение обыкновенной дроби и натурального числа

Сложение натурального числа с правильной обыкновенной дробью не представляет интереса, так как такая сумма по определению есть смешанное число. Например, .

Сложение натурального числа с неправильной обыкновенной дробью можно проводить через сложение двух дробей, если натуральное число заменить дробью (смотрите натуральное число как дробь со знаменателем 1). К примеру, .

Однако, сложение натурального числа и неправильной дроби целесообразнее проводить, выделив из дроби целую часть. В результате сложение натурального числа и дроби сводится к сложению натурального числа и смешанного числа. Для примера вычислим сумму из предыдущего примера таким способом: . Рассмотренный подход требует меньше вычислительной работы по сравнению с предыдущим способом, что особенно заметно, когда числа велики.

Сложение трех и большего количества обыкновенных дробей

Разберем, как сложить три, четыре и большее количество обыкновенных дробей.

Сложение обыкновенных дробей обладает переместительным и сочетательным свойствами. Это следует из определения обыкновенных дробей, а также из того, как мы определили сложение обыкновенных дробей. Таким образом, сложение трех, четырех и т.д. дробей можно проводить аналогично сложению трех большего количества натуральных чисел.

Сложите четыре обыкновенные дроби 5/12 , 13/12 , 1/12 и 1/12 .

Нам нужно вычислить сумму . Последовательно заменяя две соседние дроби их суммой, получим . Осталось лишь сократить полученную дробь, после чего выделить целую часть: .

.

Аналогично проводится сложение нескольких натуральных чисел и нескольких обыкновенных дробей.

Вычислите сумму .

Свойства сложения позволяют провести следующую группировку слагаемых: . Сумма трех натуральных чисел в скобках равна 14 , а сумма равна дроби 11/12 . Таким образом, .

.

Стоит отметить, что и правило сложения дробей с одинаковыми знаменателями, и правило сложения дробей с разными знаменателями остаются справедливыми для трех и большего количества складываемых дробей.

Рассмотрим решение одного из предыдущих примеров в этом свете.

Сложите четыре обыкновенные дроби 5/12 , 13/12 , 1/12 и 1/12 .

Обратившись к правилу сложения дробей с одинаковыми знаменателями, получаем . Осталось лишь сократить полученную дробь, после чего выделить целую часть: .

.

Сложите три дроби с разными знаменателями 1/2 , 3/8 и 7/12 .

Сначала выполним приведение трех дробей к наименьшему общему знаменателю (смотрите приведение к общему знаменателю трех и большего количества дробей), получаем .

Осталось лишь закончить сложение: .

.

Оцените статью
Рейтинг автора
4,8
Материал подготовил
Егор Новиков
Наш эксперт
Написано статей
127
А как считаете Вы?
Напишите в комментариях, что вы думаете – согласны
ли со статьей или есть что добавить?
Добавить комментарий