Определяем титан и отличаем от других металлов правильно
Оперативно и безошибочно идентифицировать некоторые металлы позволяет специализированное лабораторное оборудование, например, спектрометр. В бытовых условиях нелегко распознать некоторые материалы, имеющие схожие внешние признаки и магнитные свойства. Определить титан в домашних условиях, отличить его от стали и алюминия позволяют некоторые методы, проверенные на практике.
Титановые сплавы
Несмотря на большую распространенность, признание титана как конструкционного материала состоялось относительно недавно — лишь в 20 веке. Его сплавы выгодно отличаются от других соединений. Благодаря длинному списку преимуществ они находят широкое применение в различных областях. Современные технологические возможности позволяют производить самый разнообразный прокат — трубы, листы, шестигранники, фольгу, ленты, плиты. Рассмотрим в статье подробнее все основные особенности материала.
Титановые сплавы, их характеристика, применение и маркировка
Титановые сплавы — имеют в основе титан, один из самых распространённых элементов на земле. Имея высокую прочность, коррозионную стойкость и массу других особенных и полезных свойств, сплав применяется даже в ракетном строительстве.
Как отличить алюминий от медицинской стали и титана
Первая пара – цветной и черный металлы. Большинство сталей обладают магнитным свойствами. Исключение составляют легированные металлы аустенитного класса. Яркий пример – нержавейка с высоким содержанием никеля. Эта марка стали, как и титан – парамагнетик. Поэтому стандартный вариант с использованием магнита тут неприемлем.
- Лом нержавейки – разновиды, описание и цены;
- Никелевый лом.
Остаются три надежных способа как определить титан в домашних условиях:
- математический;
- графический;
- абразивный;
- гальванический.
Обозначения достаточно условны, далее раскроем каждый из вариантов подробно.
Какой материал внутреннего покрытия бака выбрать
Идентификация определенных металлов – точный и простой процесс только при наличии специального лабораторного оборудования, спектрометра в частности. В домашних условиях задача существенно усложняется. Особенно трудно отличать материалы, схожие по цвету и магнитным свойствам. Впрочем, даже в такой ситуации существуют проверенные на практике способы, как отличить титан от других металлов. Наибольший интерес для сравнения представляют алюминий и сталь, включая нержавейку. Тут, даже опытные мастера, регулярно работающие с металлами, и принимающие лом титана, не всегда способны четко идентифицировать, что у них конкретно в руках.
Титановые сплавы: нюансы термообработки
Титан широко распространен на земле. После Al, Fe и Mg он занимает четвертое место из присутствующих металлов в земной коре и является девятым элементом по распространенности на Земле. Титановые сплавы (ТС) обладают уникальным спектром свойств, благодаря сочетанию высокой прочности и жесткости, ударной вязкости и аникоррозионности, что обеспечивает широкий спектр применения для работы в средах, как с низкими, так и высокими температурами, позволяя снизить вес аэрокосмических конструкций и узлов крупногабаритной техники.
Титан сплав или металл?
Титан представляет собой цветной металл серебристо-белого цвета, внешне очень похожий на сталь. К особенностям данного материала относят небольшую удельную массу, что характерно для щелочных металлов. Показатель плотности титана позволяет разместить его между железом и алюминием, но его эксплуатационные характеристики заметно выше.
Титан в четыре раза прочнее меди и железа, в двенадцать раз прочнее алюминия, а его вес намного меньше. Предел текучести и пластичность чистого титана позволяют обрабатывать его при различных температурах. Материал поддается ковке, сварке, клепке, прокату.
Низкая тепло и электропроводность сохраняется даже при достижении рабочей температурой показателя в +500 градусов. Титан магнитится не способен. Даже помещенный в магнитное поле материал демонстрирует парамагнитные свойства. Он не выталкивается, и не притягивается.
Уникальна антикоррозийная стойкость материала, на которую не способно повлиять механическое воздействие и агрессивная среда. Даже в морской воде через десять лет титановые пластины не изменят свой внешний вид и химический состав.
Учитывая сложность получения титана в чистом виде и его высокую стоимость, чаще всего в промышленности используют различные титановые сплавы. Элемент применяют и в качестве легирующих добавок в сталь разных марок для увеличения ее прочности и жаростойкости.
Классификация титановых сплавов, виды и характеристика
Характерной особенностью титана является наличие двух аллотропических модификаций, то есть состояний, имеющих одинаковый химический состав. Таким образом, строение и свойства у титана, самого важного элемента, входящего в титановые сплавы, может отличаться.
Согласно общепринятой классификации, титановые сплавы делятся на группы:
- высокопрочные конструкционные,
- жаропрочные,
- химические.
Некоторые виды технического титана, необходимого для металлургической промышленности, отличаются разным уровнем прочности. Этот показатель напрямую зависит от содержания таких примесей, как азот, кремний, железо, углерод. При этом увеличивающаяся прочность сплава, достигающаяся добавлением большего количества алюминия, обычно обозначает пропорционально уменьшающуюся пластичность. Вместе с этим титан, содержащий алюминиевые добавки, становится более дешёвым, то есть более экономически выгодным материалом.
Группа конструкционного титана объединяет в себе титановые сплавы, которые обладают свойствами высокой коррозийной стойкости к внешним воздействиям, могут с лёгкостью свариваться между собой, а также с некоторыми другими металлическими изделиями и деталями. Сейчас уже создан специальный титан-сплав, который называется морским и применяется в солёной морской воде для производства прочных глубоководных агрегатов. Он обладает не только высокой физической и усталостной прочностью, но также и хладостойкостью. Благодаря особенностям состава и производства, данный тип сплавов является металлопродуктом с неограниченным сроком применения.
Общая характеристика свойств титана и его сплавов
Атомный вес Ti составляет 47.88. Он является упруго жестким, около 115 ГПа модуля Юнга, прочным, легким, устойчивым к коррозионным процессам. Ti и титановые сплавы обладают пределом прочности на разрыв в диапазоне 210-1380 МПа, что приближается к пределу прочности, характерному для многих сложных сталей.
Он имеет чрезвычайно низкую плотность примерно 60.0% от плотности Fe. Его можно упрочнить путем легирования растворенным веществом. Ti немагнитен и обладает отличными теплообменными способностями. Одним из его важных свойств титановых сплавов — высокая Т плавления – 1725.0 C, то есть почти на 200 C больше, чем у стали, и на 1000 C – чем у Al.
Ti пассивирован, и, следовательно, его сплавы имеют высокую степень устойчивости к воздействию большинства минеральных кислот. Он нетоксичен и совместим с биологическими тканями и минералами. Превосходная коррозионная устойчивость и биосовместимость совместно с превосходной прочностью сделали их полезными для химической промышленности и биоматериалов. Ti не является хорошим проводником электротока. Если проводимость Cu принять за 100.0%, то у Ti будет только 3.1%, из этого следует, что он довольно хороший резистор.
Слиток титана
Чистая математика
В этом подходе идентификация металлов производится по весу. Недостаток метода проявляется, когда в наличии только один тип металла. Определить в руках, что тяжелее уже не получится, приходится прибегнуть к математическим вычислениям. Способствует этому существенные отличия в плотности металлов:
- титан – 4.5;
- железа – 7.8;
- алюминия и дюрали – 2.7.
Для такого способа определения титана в своем хозяйстве нужно иметь точные весы
Значения параметра приведены в г/куб.см. Остается добавить, что плотность стали зависит от конкретной марки металла. Однако в абсолютных величинах эти отличия несущественны. Поэтому за плотность стали можно смело принимать значение аналогичной характеристики у железа.
Остается только уточнить объем и вес детали или куска металла. Далее, несложные вычисления, покажут, это алюминий, сталь или искомый металл – титан. Как определить объем детали сложной формы? Тут лучший вариант – закон Архимеда. Масса вытолкнутой жидкости, при погружении металлической конструкции, позволяет установить ее объем. Ситуацию упрощает плотность воды, эквивалентная 1 кг/куб.дм. Соответственно каждый грамм вытолкнутой жидкости равен одному кубическому сантиметру объема.
Конечно же – это муторный, сложный и неточный способ, но для того, чтобы определить титан дома он имеет место быть.
Так выглядит металл титан
Маркировка
Кроме упомянутого общего разделения, сплавам из титана присваивается специальная маркировка, которая соответствует составу и параметрам конкретного титан-материала. Технические марки ВТ1-1, ВТ1-0, ВТ1-00 содержат титан от 99,3 до 99,9%:
Разновидность титанового сплава, называемая титановой губкой (ТГ), может производиться одной из следующих маркировок: ТГ-90, ТГ-110, ТГ-150, ТГ-120, ТГ-Тв, ТГ-130, ТГ-100.
Литейные титановые виды имеют маркировки ВТ20Л, ВТ21Л, ВТ14Л, ВТ9Л, ВТ6Л, ВТ1Л, ВТ3-1Л, ВТ5Л (ВТ — высокопрочный титан, Л – литейный).
Классификация групп
Сплавы Ti подразделяют на следующие группы:
- Высокопрочные конструкционные — твердые растворы, с оптимальным соотношением прочностных характеристик и пластичности.
- Жаропрочные титановые сплавы — твердые растворы с необходимым количеством присадок, обеспечивающих стойкость в зонах с высокими температурами при незначительном снижении пластичности.
- ТС на базе химического соединения, способных конкурировать со сплавами Ni в определенном интервале температур.
Рисунки на стекле
Это наиболее доступный метод, как отличить титан в домашних условия, но им нужно овладеть и иметь опыт работы с титаном. Металл оставляет характерные несмываемые следы на стекле, кафеле. Достаточно провести заостренным краем металла по одному из указанных материалов. Это именно следы, а не царапины. Подобным способом часто разрисовывают окна общественного транспорта. Отмыть титановую графику на кафеле можно раствором плавиковой кислоты, связываться с ней следует предельно осторожно.
Это метод отличается простотой и эффективностью. Титан, вопреки бытующему мнению, оставляет след даже на загрязненном стекле. Так что обезжиривать его поверхность не обязательно. Напротив, любые марки стали и алюминия способны разве что едва поцарапать стекло. Это отличный метод, чтобы определить титан.
Особенности титановых сплавов и их получения
Общие особенности, которые имеют марки титана:
- немагнитность (отсутствие реакции на воздействие магнитного поля или его создание);
- прочность в сочетании с низкой плотностью, дающие небольшой вес и поразительную хладостойкость (последнее свойство даёт «зелёный свет» применению титана в условиях постоянного и сильного холода);
- технологичность в процессе прессования (благодаря этому сплав используется, как заготовка для обработки прессом);
- высокая коррозионная стойкость (сплав настолько хорошо выдерживает высокую влажность, что может применяться даже в воде).
Сплав проявляет свои механические свойства в зависимости от содержания внутри него таких веществ, как водород, азот, кислород и углерод. Именно они образуют с титаном, основным элементов сплава, твёрдые соединения, называемые в химии нитритами, оксидами, гидридами, карбидами. Так, повышение содержания перечисленных элементов влияет на сплав в сторону увеличения плотности, твёрдости и уменьшения пластичности, способности подвергаться сварке (штамповке и пайке) либо противостоять коррозии. Сплав при большом содержании водорода значительно увеличивает свою хрупкость.
Метод изготовления сплава из титана зависит от той разновидности материала, которую необходимо получить на выходе. Например, чистейший йодный титан-сплав можно произвести путём диссоциации термического типа, в которой участвует четырёхйодистый сплав, либо применяется способ зонной плавки. Однако, благодаря невысокому модулю упругости титана, изготовление жёстких конструкций из данного составного вещества становится затруднительным, поэтому не производится.
Сравнение плюсов и минусов
Как у нержавеющих, так и эмалевых подогревателей есть свои достоинства и недостатки. Оба типа устройств подвержены коррозии, хоть и в разной степени. Некоторые изделия мировых брендов не имеют жертвенного анода, что снижает затраты на обслуживание подогревателя. С другой стороны, возрастает вероятность возникновения электрохимической коррозии в случае дефектов в сварных швах при изготовлении бака.
Эмалированный подогреватель требует периодической замены анода и осмотра внутренней поверхности, однако цена изделия из углеродистой стали почти в 2 раза ниже, чем у выполненного из нержавейки. Низкое качество водопроводной воды отрицательно сказывается на работе обоих типов изделий и снижает ресурс.
Положительные стороны эмалевых емкостей:
- противостоят различным примесям;
- являются химически нейтральными;
- выдерживают высокую температуру;
- не влияют на вкус воды.
Сравнение моделей водонагревателей.
Недостатки:
- неустойчивы к механическим повреждениям;
- требуют периодического обслуживания;
Подогреватели из нержавеющей стали имеют срок заводской гарантии 7-10 лет в зависимости от производителя. Эмалевым моделям дают гарантию на 5-7 лет. Разница в сроке службы не велика, но если учитывать цену, то преимущество оказывается на стороне последних. Но при правильной эксплуатации и надлежащем уходе оба типа водоподогревателей могут прослужить 12-15 лет.
- надежная защита от коррозии;
- не требуют внутреннего осмотра;
- длительный срок службы.
В случае применения материала низкого качества у воды может появиться неприятный привкус, а в сварных швах возникнуть очаги коррозии.
Высокопрочные конструкционные ТС
Высокопрочные сплавы – ВТ-14, ВТ-22, ВТ-23, ВТ-15 (1000.0-1500.0 МПа).
ВТ-22 – свариваемый ТС с высокими прочностными характеристиками и прокаливаемостью. Он нашел широкое применение при изготовлении отечественных самолетов: Ил-76/ 86/ 96, Ан-72/ 74/124/224/148, Як-42, МиГ-29 и других. Из данного ТС изготовляются крупногабаритные детали для внутреннего силового набора, узлов шасси и сварных узлов, например, траверс и балок тележек основных шасси.
ВТ- 22И, полученный высокотехнологичным методом изотермического деформирования в условиях сверхпластичности, может обеспечить выпуск тонкостенных деталей сложной конфигурации и гарантирует надежную сварку титановых сплавов. Высокий и стабильный уровень механических свойств достигается однородной мелкозернистой структурой, что снижает трудоемкость мехобработки деталей на 35–40%.
Трубы из титанового сплава для теплообменников
Абразивный круг
Идеальный способ как отличить титан от нержавейки для владельцев точильного станка (что, на самом деле, совсем не обязательно). Впрочем, подойдет практически любая абразивная поверхность, даже асфальт. Контакт титана с абразивом сопровождается россыпью искр насыщенно-белого цвета. Взаимодействие стали с абразивной поверхностью характеризуется желтым или красным оттенком. Искр при этом существенно меньше.
Нержавеющие марки стали – пожаробезопасны. Обработка определенных марок нержавейки происходит вообще без искр. Это свойство используется на пожароопасных производствах. Там допускаются исключительно инструменты из нержавеющей стали. Аналогичная методика применяется в вопросе как отличить титан от алюминия. Стачивание последнего на абразивном круге также происходит практически без искр.
Этот способ определения титана можно назвать самым эффективным – цвет искры действительно будет отличным от других металлов. Вообще, тест на искру является одним из самых популярных и правильных для определения и распознования разных металлов.
Видео – как отличить титан от магния и алюминия:
Применение
Сферы человеческой жизнедеятельности, в которых с успехом применяется титановый сплав, трудно перечислить. Титановые сплавы прежде всего известны тем, что нашли реализацию в ракетостроении и других сферах, связанных с покорением космоса, самолётостроением и проведением научно-исследовательских работ в этом направлении. Для упомянутых сфер изготавливают титановые детали для каркаса воздушных и космических судов, элементы обшивки, топливные бачки, внутренности для мощных реактивных двигателей, компрессоры, диски, части воздухозаборников.
Кроме безвоздушного пространства в космосе и разряженной атмосферы в пределах планеты, титан применяется для водных работ, то есть для установки на морских и океанических судах. Титановым делают корпус грузоподъёмного судна, его насосные детали, гребные винты и т.д.
Медицинская промышленность не смогла бы быть такой прогрессивной без титановых сплавов, применяемых для изготовления высокопрочных и точных мединструментов, внутрикостных фиксационных приспособлений, внутренних протезов, хирургических зажимов. Для химических производств сплав титан уже давно стал незаменим при изготовлении различных реакторов, выдерживающих агрессивные химические среды, а также центрифуг, лабораторных насосов и специальных змеевиков.
Промышленность, связанная с общественным питанием, обязана титану возможностью производства сепараторов, частей для рефриджераторов, цистерн и разнообразных холодильных ёмкостей. В такой сложной области, как гальванотехника, работающей с электрическим током, титан входит в состав анодных корзин, гальванических ванн, трубопроводов, подвесок, теплообменников. В нефтегазовой промышленности описываемым сплавом пользуются для изготовления частей клапанов, фильтров, отстойников и других специальных резервуаров.
Титановые сплавы помогают человечеству в производственной деятельности, а также при изготовлении пищи, техники, ракет, кораблей, инструментов для медицины, уже долгое время. До сих пор изобретаются всё новые сплавы с уникальным сочетанием элементов и добавлением новых, которые обладают ещё неизвестными до этого свойствами, передающимися конечному титан-сплаву. В зависимости от содержания изначальных веществ, способа и условий изготовления титан приобретает различные свойства и соответствующим образом маркируется.
Особенности термообработки
Проводится для повышения эксплуатационных качеств. В зависимости от химического состава и назначения сплавы подвергают:
- отжигу. Является одним из самых распространенных видов термообработки и при образовании гетерофазных структур обеспечивает достаточную прочность. Различают несколько видов отжига:
- рекристаллизационный — температура 520–850 °С. Ее показатели увеличиваются для легирующих элементов. Также на температуру влияет вид полуфабриката — более высокая для прутков, поковок, штамповки и более низкая для листов;
- с фазовой перекристаллизацией — температура нагрева зависит от сплава и составляет 750–950 °С. Таким образом, снижают твердость, повышают пластичность, добиваются измельчения зерна и устранения структурной неоднородности;
Гальванический подход
Другой верный способ как узнать титан, доступен прямо в гараже. Методика основана на окрашивании этого металла посредством анодирования. Простейшая конструкция «лабораторной установки» представляет автомобильный аккумулятор, плюс которого соединен с титановой пластиной. К минусу источника постоянного тока подключают металлический стержень, обмотанный ватой смоченной в кока-коле. Идеальный вариант – любой соляной раствор.
Если провести ватой по титану, металл окрасится в течение нескольких секунд. Цвет, получаемый в процессе формирования оксидной пленки, зависит от приложенного напряжения и времени обработки поверхности. Впрочем, если задача стоит как определить титан от нержавейки, то тональность окраски не важна. Главный критерий – изменение цвета.
Видео – как отличить титан от стали данным способом:
Двоякость свойств металла титан
Многих интересует немного загадочный и не до конца изученный титан — металл, свойства которого отличаются некоторой двоякостью. Металл и самый прочный, и самый хрупкий.
Самый прочный и самый хрупкий металл
Его открыли двое ученых с разницей в 6 лет — англичанин У. Грегор и немец М. Клапрот. Название титана связывают, с одной стороны, с мифическими титанами, сверхъестественными и бесстрашными, с другой стороны, с Титанией — королевой фей. Это один из самых распространенных в природе материалов, но процесс получения чистого металла отличается особой сложностью.
Маркировка титановых сплавов
Существуют две кристаллографические формы титана, учитывающихся при маркировке:
- Альфа-титан, в котором атомы расположены в кристаллической решетке;
- бета-титан, в котором атомы расположены в кристаллической решетке с кубическим телом (BCC).
Чистый титан существует в форме альфа-фазы при температуре выше 883 C и в форме бета-фазы при температуре ниже 883 C.Температура аллотропического превращения альфа-титана в бета-титан называется температурой бета-трансуса.
Легирующие элементы в ТС могут стабилизировать либо альфа-фазу, либо бета-фазу сплава.Алюминий (Al), галлий (Ga), азот (N), кислород (O) стабилизируют альфа-фазу.
Молибден (Mo), ванадий (V), вольфрам (W), тантал (Ta), кремний (Si) стабилизируют вета-фазу.
Титановые сплавы подразделяются на четыре группы по фазовому составу:
- Коммерчески чистые и низколегированные ТС. Он состоит из зерен-фазы и дисперсных сфероидных частиц бета-фазы. Небольшие количества железа, присутствующие в сплавах, стабилизируют бета-фазу и обладает относительно низкой механической прочностью и хорошей коррозионной стойкостью.
- Титановые альфа сплавы состоят исключительно из альфа-фазы. Они содержат алюминий в качестве основного легирующего элемента, стабилизирующего альфа-фазу. Они имеют хорошую вязкость разрушения и сопротивление ползучести в сочетании с умеренной механической прочностью, которая сохраняется при повышенных температурах. Такие ТС легко свариваются, но их работоспособность в горячем состоянии оставляет желать лучшего.
- Титановые альфа-бета сплавы, содержат 4-6% стабилизаторов вета-фазы, поэтому они состоят из смеси обеих фаз. Сплавы альфа-вета подвергаются термообработке. Они имеют высокую механическую прочность и хорошую горячую форму. Сопротивление ползучести таких ТС ниже, чем у альфа-сплавов.
- Титановые бета-сплавы богаты вета-фазой. Они содержат значительное количество вета-фазных стабилизаторов, термически обрабатываемыедо очень высокой прочности и имеют хорошую форму в горячем состоянии. Пластичность и усталостная прочность этих ТС в условиях термообработки низкие.
Титановые сплавы обозначаются согласно их составам:
- Ti-5Al-2.5Sn идентифицирует титановый сплав, содержащий 5% алюминия и 2,5% олова.
- Ti-6Al-4V идентифицирует Ti-сплав, содержащий 6% алюминия и 4% ванадия.
Интерметаллические сплавы титана
Сегодня увеличивается потребность в принципиально новых конструкционных материалах. Например, упрочненные жаропрочные сплавы уже не могут в полной мере удовлетворить требованиям авиакосмической техники. Из интерметаллических сплавов титана наиболее широкое применение нашли:
- никелиды Ti₂Ni, TiNi, TiNi₃. Наиболее известен нитинол — сплав титана и никеля, который обладает высокой стойкостью к коррозии и эрозии, свойством памяти формы;
- силициды Ti₃Si, Ti₅Si₃, Ti₅Si₄, TiSi и TiSi₂. Хотя кремний считается вредной примесью, но он способен повышать жаропрочность и жаростойкость благодаря ограниченной растворимости;
- бориды TiB₂. При сильном нагревании титан взаимодействует с элементарным бором и образует очень твердые сплавы, которые востребованы для защиты автомобильных деталей и механизмов аппаратов от абразивного износа, в металлургии в составе напыляемых порошков, в атомной промышленности для производства нейронопоглощающих экранов и боропластов, а также как компонент испарителей алюминия;
- алюминиды Ti₂Al, TiAl и TiAl₃. Среди преимуществ можно выделить высокую температуру плавления, упругость, низкую плотность, возрастание предела текучести с повышением температуры, устойчивость к окислению и возгоранию, жаропрочность. Используют для изготовления аэрокосмических деталей нового поколения, в транспортном машиностроении, в газо- и нефтеперерабатывающих установках химпромышленности, а также в атомном машиностроении.
Прочие методики
Существует ряд альтернативных способов, как определить титан в руках или алюминий, например. Один из вариантов – тонкая стружка. В случае титана она легко воспламеняется и ярко горит. Напротив, алюминиевая стружка плавится. При помещении «металлических опилок» дюралюминия в щелочной раствор наблюдается активное выделение водорода.
Следующий способ как отличить металл титан от стали и алюминия – теплопроводность. Численные значения параметра Вт/(м·K) для указанных металлов составляют:
- титан – 14;
- сталь низкоуглеродистая – 55;
- нержавейка – 16;
- алюминий – 250.
Титановые изделия более теплые в руках. Конечно, подход не характеризуется высокой точностью, а для отличия титана от нержавеющей стали – вообще непригоден.
Конструкционные высокопрочные ТС
Предел прочности σв > 1000 МПа марок ВТ6, ВТ14, ВТ3-1, ВТ22, ВТ23М. Отличаются удовлетворительной свариваемостью всеми видами сварки. Данные сплавы обладают высокой коррозионной стойкостью в отожженном и термически упрочненном состояниях во влажной атмосфере, морской воде, во многих других агрессивных средах.
Кроме того, сферы применения всегда будут требовать повышения их эксплуатационных свойств за счет новых термических и термомеханических обработок. Среди наиболее перспективных можно назвать ВТ23М. Он сочетает в себе высокую прочность, трещиностойкость как основного материала, так и сварных соединений. Во многом превосходит зарубежные аналоги по свойствам и стоимости за счет уменьшенного содержания молибдена и ванадия, исключения олова и циркония. Из него изготавливают все виды прокатных, кованых, прессованных полуфабрикатов, а также монолитные, сварные и паяные конструкции.
Резюме
Как видно, даже в домашних условиях, отличить титан от алюминия и стали вполне реально. Наиболее практичные варианты – искра и стекло. Для первого случая достаточно любой абразивной поверхности, даже асфальта или застывшего бетона. Яркое искрение титана успешно используют байкеры, устанавливая на обувь подковы из этого металла. След на стекле – выгоден тем, что металл не повреждается. Относительный недостаток – некоторые титановые сплавы рисунка не оставляют. Но для чистого метала это оптимальный вариант.
Как определить настоящий титан?
В природе титан встречается в составе таких минералов как титанит, ильменит или рутил. В чистом виде он представляет собой серебристо-серый легкий металл с самой высокой удельной прочностью. По внешнему виду его сложно отличить от алюминия или нержавейки. Метод с магнитом здесь не подойдет, так как магнит тоже не притягивает ни алюминий, ни большинство нержавеющих сталей. Чтобы развеять все сомнения, что у вас в руках образец из настоящего титана, необходимо провести один из доступных вам тестов.
Производство титана и его сплавов
Титан производится с использованием процесса Kroll. Основные стадии включают извлечение, очистку, производство губки, создание сплава, а также формование. В начале выплавки производитель получает титановые концентраты с рудников. Хотя рутил можно использовать в его естественной форме, ильменит обрабатывают для удаления железа, чтобы он содержал не менее 85% диоксида титана. Эти материалы помещаются в реактор с псевдоожиженным слоем вместе с газообразным хлором и углеродом. Материал нагревают до 900 C, и последующая химическая реакция приводит к образованию нечистого тетрахлорида титана (TiCl4) и оксида углерода. Далее различные нежелательные хлориды металлов, которые образуются, должны быть удалены.
Прореагировавший металл помещается в большие дистилляционные емкости и нагревается. На этом этапе примеси отделяются с помощью фракционной перегонки и осаждения. На этом этапе удаляются хлориды металлов, в том числе железо, ванадий, цирконий, кремний и магний.
Очищенный тетрахлорид титана переносится в виде жидкости в реакторную емкость из нержавеющей стали. Затем добавляют магний, и контейнер нагревают до температуры около 1100 C. Аргон закачивается в емкость для удаления воздуха и предотвращает загрязнение сплава кислородом или азотом. Магний реагирует с хлором с образованием жидкого хлорида магния. Это оставляет твердое титановое твердое вещество, так как температура плавления титана выше, чем в реакции.
Твердое титановое вещество удаляют из реактора путем бурения, а затем обрабатывают водой и соляной кислотой для удаления избытка магния. Полученное твердое вещество представляет собой пористый металл, называемый губкой. Чистая титановая губка может быть преобразована в пригодный для использования сплав с помощью дуговой печи с расходуемым электродом. В этот момент губка смешивается с различными добавками сплава. Точное соотношение материала губки к сплаву формулируется в лаборатории до производства. Затем эту массу прессуют в компакты и сваривают вместе, образуя губчатый электрод.
Губчатый электрод помещают в вакуумно-дуговую печь для плавления. В этом охлаждаемом водой медном контейнере электрическая дуга используется для плавления губчатого электрода с образованием слитка. Весь воздух в контейнере либо удаляется (образуя вакуум), либо атмосфера заполняется аргоном для предотвращения загрязнения.
После изготовления слитка его вынимают из печи и проверяют на наличие дефектов. Поверхность может быть кондиционирована по требованию заказчика. Затем слиток отправляется покупателю готовой продукции, где он может быть измельчен и изготовлен в различные продукты.
Производство титана
Область применения
Титановый сплав, который имеет высокую коррозионную стойкость, высокую удельную прочность и хорошую термостойкость, используется для различных частей космического корабля, включая наружную оболочку топливного бака и крылья. Сочетая легкий вес с высокой прочностью, титан помогает усилить планеры и повысить производительность реактивных двигателей. В случае космического челнока, титан используется для многих критических частей, включая наружные панели топливного бака и детали крыла.
В самолетах используется большое количество титанового сплава, потому что он легкий и чрезвычайно прочный при высоких температурах. ТС применяется для укрепления каркасной конструкции и способствует техническому прогрессу реактивных двигателей.
Титановые сплавы применение:
- Установки для сжиженного природного газа;
- установки опреснения морской воды;
- нефтеперерабатывающие заводы;
- атомные электростанции;
- автоцистерны для химических реагентов, потому что ТС легок, устойчив к коррозии, и чрезвычайно сильный;
- теплообменники, которые используются в экстремальных условиях высокой температуры и высокого давления;
- биомедицинские приложения.
Огромными преимуществами титана являются его высокое отношение прочности к весу и антикоррозионность. В сочетании с нетоксичным состоянием и способностью эффективно противостоять коррозии от биологических жидкостей титан стал базовым металлом для имплантата в области медицины, со сроком службы более 20 лет.
Еще одним преимуществом Ti для применения в медицинской отрасли является его неферромагнитное свойство, позволяющее безопасно обследовать больных с применением МРТ и ЯМР.
Титановый протез сустава
Техническая характеристика
Сплавы титана отличаются точностью химического состава, тщательностью изготовления и отсутствием примесей. Во многом механические свойства титана зависят от того, какие элементы входят в состав примесей, а также их количество и соотношение. При этом невозможно упустить тот общеизвестный факт, что данный элемент обладает целым рядом достоинств. Титан отличает:
·высокая удельная прочность;
·хорошая ударная вязкость.
Механическая прочность титана с повышением температуры выше 250 °C теряется почти вдвое. Положение спасают сплавы титана, в которых этот недостаток нивелируется. Зато титан отличается исключительной коррозионной стойкостью. Коррозионную стойкость оценивают по величине потерь с 1 кв. метра поверхности.
Коррозионная стойкость вес потерь с 1 кв. метра Оценка в баллах Исключительно стойкие Менее 0,001 г 1 Весьма стойкие 0,001 — 0,005 2 0,005 — 0,01 г 3 Стойкие 0,01 — 0,05 г 4 0,05 — 0,1 г 5 Удовлетворительно стойкие 0,1 — 0,3 г 6 Малостойкие 0,3 — 1,0 г 7 1 — 5,0 г 8 Нестойкие Более 5 г. 9 При сравнительных испытаниях коррозионной стойкости в промышленной и морской атмосфере выяснилось, что на алюминиевых сплавах, нержавеющих сталях, медно-никелевых сплавах и на сплаве инконель за пятилетний срок появились видимые признаки коррозии, тогда как титановая пластина не потеряла свой первоначальный блеск. Такая коррозионная стойкость обусловлена наличием на поверхности титана пассивной оксидной плёнки, предохраняющей металл от контакта с агрессивным агентом.
Титан особенно стоек к коррозии в присутствии кислорода. Так, например, в условиях воздушной аэрации титан практически не подвергается коррозии в муравьиной кислоте любой концентрации до температуры 100 °C, тогда как без аэрации быстро корродирует в 25% растворе муравьиной кислоты.
Жаропрочные Ti-сплавы
В 60-х гг. 20 века отечественные специалисты разработали, среди прочих, новые титановые сплавы ВТ3-1, ВТ8, ВТ8-1, ВТ8М-1, ВТ9, ВТ25У, ВТ18У. В настоящее время они уступают лучшим зарубежным сплавам IMI834 и Ti1100 только по сопротивлению ползучести и при температурах выше 500 °С. Отечественный ВТ-25 обладает прочностными показателями до 1150 МПа и достигает пика своих свойств при температуре 550 °С. При этом одним из самых лучших наших сплавов, используемых в промышленности, можно назвать ВТ-18. Он обладает самыми прочностными свойствами при температуре 600 °С.
Следует отметить, что перспектив повышения жаропрочности Ti-сплавов остается крайне мало. Это связано с тем, что при температуре 620 °С механизм окисления альфа-фазы титана кардинально меняется. Свойства ухудшаются за счет проникновения кислорода через оксидную пленку в толщу металла. А область применения защитных покрытий еще только предстоит изучить. Сейчас основной поиск жаропрочных соединений все более смещается в сторону титановых интерметаллидов.
Проверка на гальваническую реакцию
Для проведения этого теста потребуется источник постоянного тока с напряжением около 12 В. Это может быть автомобильный аккумулятор или преобразующий трансформатор. Соедините через провод плюс батареи с исследуемым образцом, а минус с металлическим стержнем, на конце которого намотана вата, марля или кусок хлопчатобумажной ткани. Намочите вату слабым раствором соляной кислоты или обычной кока-колой.
Если это титан, то при прикосновении к металлу его поверхность будет окрашиваться в результате образования оксидной пленки. Цветовой оттенок зависит от величины напряжения, концентрации кислоты в растворе и времени воздействия. Нержавеющие сплавы и алюминий данной реакции не подвержены.
Нюансы термообработки титановых сплавов
В настоящее время из-за растущего спроса на титан и его сплавы с улучшенными физическими и химическими свойствами многие исследователи проявляют большой интерес к улучшению процессов обработки под воздействием температуры для получения новых видов сплавов.
ТС подвергаются термообработке для достижения следующего:
- Снятие напряжения, чтобы уменьшить остаточные явления, возникающие в процессе изготовления.
- Отжиг для достижения оптимального сочетания пластичности, обрабатываемости, стабильности размеров и структурной устойчивости.
- Обработка раствора и старение, для увеличения прочности.
Комбинации процессов используются для оптимизации свойств и получения других преимуществ, таких как:
- Вязкости разрушения;
- предела выносливости;
- высокой температуры ползучести;
- стойкости к преимущественному химическому воздействию;
- предотвращение искажения;
- подготовки ковки для последующих операций формования и изготовления.
Термическая обработка титановых сплавов ее типы:
- Снятие напряжения. С ТС снимается стресс, без отрицательного влияния на прочность или пластичность. Процесс ковки происходит при температуре от 595 до 705 C в течение до двух часов с последующим воздушным охлаждением. Это уменьшает нежелательные остаточные напряжения, которые могут возникнуть в процессе ковки.
- Отжиг, который обычноприменяется для ковки заготовок, не является полным отжигом и может оставить следы холодной или теплой обработки. Дуплексный и триплексный отжиг используются для улучшения сопротивления ползучести и вязкости разрушения.
- Обработка раствора и старение. Этот процесс состоит из нагрева сплава до определенной температуры, закалки с контролируемой скоростью в масле, воздухе или воде и старении. Выдержка состоит из повторного нагревания до температуры от 425 до 650 C в течение примерно двух часов. Этот процесс развивает более сильные стороны, чем другие.
Таким образом, Ti -сплавы обладают огромным потенциалом для выбора дизайнером «материала будущего» из-за его уникального сочетания металлургических свойств, таких как высокое отношение прочности к весу в диапазоне температур от минус до 540 C. В этом отношении его базовые сплавы превосходят все обычные конструкционные материалы, что позволяет применять их в самых важных процессах.
Полезные советы от команды «МАЗПРОМа»
Хотели бы обратить ваше внимание на несколько моментов при выборе титанового проката.
- В связи со сложными и энергозатратными технологическими процессами время производственного цикла титанового листа составляет около 90 дней. Поэтому если вы сталкиваетесь с тем, что компания предлагает вам приобрести любые марки и размеры, а в наличии указаны тысячи тонн, то не спешите этому верить. Конечно, при имеющихся на производстве заготовках срок может быть сокращен примерно до одного месяца.
- Обязательно проверьте перед покупкой возраст материала. Хотя титан и сохраняет все свойства на протяжении долгого времени, рекомендуется, чтобы он был не старше 10 лет. Дело в том, что до сих пор в продаже встречается металл, который был изготовлен еще в 1980-х гг. Хорошо еще, если он был на хранении у одного из оборонных предприятий, которое потом реализовало его на рынке как неликвид. Гораздо опаснее купить прокат, который мог уже использоваться ранее. Например трубы, листы срезают с теплообменников, которые уже вышли из употребления. Опасность кроется не только в различных дефектах, но и возможном высоком уровне радиации.
- Чтобы точно быть уверенным в качестве продукции, запрашивайте образец для предварительной проверки.
При обращении к нам вы получаете титановый прокат, полностью соответствующий действующим ГОСТам и ТУ. Для консультации обратитесь по указанному на сайте телефону.
Пластичные сплавы со средней прочностью
Марка сплава Процент легирующих добавок Предел прочности кгс/мм2 Рабочая температура АТ-2 2,5 Zr, 1,5 Mo 50 — 80 200 — 300 ОТ4−1 1−2,5 Al, 0,7−2 Mn 50 — 80 200 — 300 ОТ4 3,5−5 Al, 0,8−2 Mn 50 — 80 200 — 300 АТ-3 3 Al, 1,5%(Cr+Fe+Si+B) 50 — 80 200 — 300 ВТ5−1 4−6 Al, 2−3 Sn 50 — 80 200 — 300 Определение по искре
Это один из самых безошибочных методов определения титана. Для него вам понадобится болгарка или точильный станок, а при отсутствии таковых подойдет любая абразивная поверхность, например, мелкий напильник или асфальт. При соприкосновении алюминия с вращающимся точильным кругом происходит стачивание материала практически без искрообразования. Контакт абразива и стали сопровождается потоком искр, которые имеют цвет от светло-желтого до темно-красного.Татан же при трении об абразивную поверхность или при резке режущим диском образует поток длинных искр ярко белого цвета. Дело в том, что этот металл обладает свойством пирофорности, в результате чего маленькие частицы материала, образующиеся при стачивании или пилении, воспламеняются и искрятся на воздухе. Эти искры гораздо ярче и горячее тех, что образуются при обработке стали, поэтому имеют белый цвет и создают повышенную пожарную опасность. Титановый порошок даже используется в пиротехнике для получения ярких пиротехнических фонтанов.
Конструкционные сплавы с повышенной прочностью
Марка сплава Процент легирующих добавок Предел прочности кгс/мм2 Рабочая температура ВТ-4 3,5−4,5 Al, 0,8−2 Mn 80 — 100 300 — 450 ОТ4−2 5,5−7 Al, 0,2−1,8 Mn 80 — 100 300 — 450 ВТ5 4,3−6,2 Al 80 — 100 300 — 450 ВТ-6 5,5−7 Al, 4,2−6 V 80 — 100 300 — 450 ВТ-6с 5−6,5 Al, 5,5−4,5 V 80 — 100 300 — 450 ВТ-20 5,5−7,5 Al, 1,-2,5 Zr, 0,5−2 Mo, 0,8−1,8 V 80 — 100 300 — 450 АТ-4 4,5 Al, 1,5%(Cr+Fe+Si+B) 80 — 100 300 — 450 АТ-6 6 Al, 1,5 (Cr+Fe+Si+B) 80 — 100 300 — 450 Повышенная коррозионная стойкость сплавов
Марка сплава Процент легирующих добавок Предел прочности кгс/мм2 Рабочая температура 4200 0,2 Pd 60 — 100 300 — 600 4201 31−35 Mo 60 — 100 300 — 600 4204 5 Ta 60 — 100 300 — 600 НТ60 40−50 Nb 60 — 100 300 — 600 СТ! Ti-Al-Zr-Sn 60 — 100 300 — 600 СТ4 Ti-Al-Sn-Mo-Sr 60 — 100 300 — 600 СТ6 Ti-Al-Zr-W 60 — 100 300 — 600 Учимся отличать титан, алюминий, нержавеющую сталь, бериллий и магний
Точная идентификация металлов с определением их химического состава при наличии примесей может быть выполнена только в лабораторных условиях или с использованием специального оборудования. Отличить титан от нержавеющей стали аустенитного класса или алюминия довольно сложно. Особенно если у вас имеется один образец и сравнивать не с чем. Все три металла являются парамагнетиками и не реагируют на магнит, имеют серебристый цвет и похожий удельный вес. Но есть несколько проверенных простых способов отличить титан от легированной стали и алюминия.
Высокопрочные сплавы с нестабильной β-структурой
Марка сплава Процент легирующих добавок Предел прочности кгс/мм2 Рабочая температура ВТ-14 3,5−6,3 Al, 2,5−3,5 Mo, 0,9−1,9 V 110 — 160 300 — 400 ВТ-15 2,5−3,5 Al, 6,8−8 Mo, 9,5−11 Cr 110 — 160 300 — 400 ВТ-16 1,6−3 Al, 4,5−5,5 Mo, 4−5 V 110 — 160 300 — 400 ВТ-22 4,4−5,9 Al, 4−5,5 Mo, 4−5,5 V, 0,5−2 Cr, 0,2−4 Si, 0,2−0,5 Fe 110 — 160 300 — 400 ТС-6 3 Al, 5 Mo, 6 V, 11 Cr 110 — 160 300 — 400
ли со статьей или есть что добавить?