Как делать дроби с разными знаменателями

Содержание

Сравнение дробей

Продолжаем изучать дроби. Сегодня мы поговорим об их сравнении. Тема интересная и полезная. Она позволит новичку почувствовать себя учёным в белом халате.

Суть сравнения дробей заключается в том, чтобы узнать какая из двух дробей больше или меньше.

Чтобы ответить на вопрос какая из двух дробей больше или меньше, пользуются операциями отношения, такими как больше (>) или меньше (<).

Ученые-математики уже позаботились о готовых правилах, позволяющие сразу ответить на вопрос какая дробь больше, а какая меньше. Эти правила можно смело применять.

Мы рассмотрим все эти правила и попробуем разобраться, почему происходит именно так.

Обыкновенные дроби

Доля — это каждая равная часть, из суммы которых состоит целый предмет.

Для примера возьмем два мандарина. Когда мы их почистим, то получим в каждом мандарине разное количество долек или долей. В одном может быть 6, а в другом — целых 9. Размеры долей у каждого мандарина тоже разные.

У каждой доли есть свое название: оно зависит от количества долей в конкретном предмете. Если в мандарите шесть долей — каждая из них будет определяться, как одна шестая от целого.

  • Половина — одна вторая доля предмета или 1/2.
  • Треть — одна третья доля предмета или 1/3.
  • Четверть — одна четвертая доля предмета или 1/4.

Понятие доли можно применить не только к предметам, но и величинам. Так, например, картина занимает четверть стены — при этом ее ширина треть метра.

Чтобы быстрее запомнить соотношения частей и целого, можно использовать наглядную табличку:

Дроби. Умножение и деление дробей.

Чтобы перемножить обыкновенные дроби, необходимо умножить числитель на числитель (получим числитель произведения) и знаменатель на знаменатель (получим знаменатель произведения).

Формула умножения дробей:

Перед тем, как приступить к умножению числителей и знаменателей, необходимо проверить на возможность сокращения дроби. Если получится сократить дробь, то вам легче будет дальше производить расчеты.

Обратите внимание! Здесь не нужно искать общий знаменатель!!

Деление дробей. Правила. Примеры.

Следующее действие, которое можно выполнять с дробями это деление. Выполнять деление дробей достаточно просто главное знать несколько правил деления. Разберем правила деления и рассмотрим решение примеров на данную тему.

Сложение дробей: теория и практика

Дробь — одна из форм представления числа в математике. Это запись, в которой a и b являются числами или выражениями. Существует два формата записи:

  • обыкновенный вид — 1/2 или a/b,
  • десятичный вид — 0,5.

Над чертой принято писать делимое, которое является числителем, а под чертой всегда находится делитель, который называют знаменателем. Черта между ними означает деление.

Дроби бывают двух видов:

  1. Числовые — состоят из чисел, например, 5/9 или (1,5 – 0,2)/15.
  2. Алгебраические — состоят из переменных, например, (x + y)/(x – y). В этом случае значение дроби зависит от данных значений букв.

Дробь называют правильной, когда ее числитель меньше знаменателя. Например, 3/7 и 31/45.

Неправильной — ту, у которой числитель больше знаменателя или равен ему. Например, 21/4. Такое число является смешанным и читается, как пять целых одна четвертая, а записывается — 5 14.

Деление обыкновенной дроби на дробь.

Деление обыкновенной дроби на дробь происходит так: переворачиваете вторую дробь (т.е. меняете числитель и знаменатель местами) и после этого дроби перемножаются.

Формула деления обыкновенных дробей:

Основные свойства дробей

1. Дробь не имеет значения, при условии, если делитель равен нулю.

2. Дробь равняется нулю в том случае, если числитель равен нулю, а знаменатель отличен от нуля.

3. Равными называются такие a/b и c/d, если:

  • a * d = b * c.

4. Если числитель и знаменатель умножить или разделить на одно и то же натуральное число, то получится равная ей дробь.

Сложение дробей с разными знаменателями.

Правила сложения дробей с разными знаменателями:

  • приводим дроби к наименьшему общему знаменателю (НОЗ). Для этого находим наименьшееобщее кратное (НОК) знаменателей;
  • складываем числители дробей, а знаменатели оставляем не меняя;
  • сокращаем дробь, которую получили;
  • если получили неправильная дробь – преобразовываем неправильную дробь в смешанную дробь.

Примеры сложения дробей с разными знаменателями:

Дроби. Сложение дробей.

Дроби. Сложение дробей.

2 Сложение и вычитание дробей с разными знаменателями.

Для того, чтобы сложить или вычесть дроби с разными знаменателями, нужно сначала привести их к одному знаменателю, а дальше действовать, как указано в начале этой статьи. Общий знаменатель нескольких дробей — это НОК (наименьшее общее кратное). Для числителя каждой из дробей находятся дополнительные множители с помощью деления НОК на знаменатель этой дроби. Мы рассмотрим пример позже, после того, как разберемся, что же такое НОК.

Как устроена обыкновенная дробь

Обыкновенная дробь — это запись вида m/n, где m и n любые натуральные числа.

Такие дроби записываются с помощью двух натуральных чисел и горизонтальной черты, которая называется чертой дроби. Иногда ставится не горизонтальная черта, а косая.

Числитель обыкновенной дроби m/n — это натуральное число m, которое стоит над чертой. Числитель это делимое — то, что мы делим.

Знаменатель обыкновенной дроби m/n — натуральное число n, которое стоит под чертой. Знаменатель это делитель — то, на сколько делим.

Черта между числителем и знаменателем — символ деления.

Равные обыкновенные дроби — обыкновенные дроби a/b и c/d, для которых справедливо равенство: a * d = b * c. Пример равных дробей: 1/2 и 2/4, так как 1 * 4 = 2 * 2.

Неравные обыкновенные дроби — обыкновенные дроби a/b и c/d, для которых равенство: a * d = b * c не является верным.

Как плюсовать дроби

Сложение — это арифметическое действие, в результате которого получается новое число. Оно содержит в себе сумму заданных чисел.

Свойства сложения

  • От перестановки мест слагаемых сумма не меняется: a + b = b + a.
  • Чтобы к сумме двух чисел прибавить третье нужно к первому числу прибавить сумму второго и третьего числа: (a + b) + c = a + (b + c).
  • Если к числу прибавить ноль, получится само число: a + 0 = 0 + a = a
  • При сложении числа можно переставлять и объединять в группы, результат от этого не изменится.

Давайте рассмотрим несколько вариантов сложения обыкновенных дробей.

Сложение смешанных чисел (смешанных дробей).

Правила сложения смешанных дробей:

  • приводим дробные части этих чисел к наименьшему общему знаменателю (НОЗ);
  • отдельно складываем целые части и отдельно дробные части, складываем результаты;
  • если при сложении дробных частей получили неправильную дробь, выделяем целую часть из этой дроби и прибавляем ее к полученной целой части;
  • сокращаем полученную дробь.

Пример сложения смешанной дроби :

Дроби. Сложение дробей.

3 Наименьшее общее кратное (НОК)

Наименьшее общее кратное двух чисел (НОК) — это наименьшее натуральное число, которое делится на оба эти числа без остатка. Иногда НОК можно подобрать устно, но чаще, особенно при работе с большими числами, приходится находить НОК письменно, с помощью следующего алгоритма:

Для того, чтобы найти НОК нескольких чисел, нужно:

  1. Разложить эти числа на простые множители
  2. Взять самое большое разложение, и записать эти числа в виде произведения
  3. Выделить в других разложениях числа, которые не встречаются в самом большом разложении (или встречаются в нем меньшее число раз), и добавить их к произведению.
  4. Перемножить все числа в произведении, это и будет НОК.

Например, найдем НОК чисел 28 и 21:

др22

Сравнение дробей с разными числителями и разными знаменателями

Нередко случается так, что приходиться сравнивать дроби с разными числителями и разными знаменателями. Например, сравнить дроби пять вторыхи .

Чтобы ответить на вопрос, какая из этих дробей больше или меньше, нужно привести их к одинаковому (общему) знаменателю. Затем можно будет легко определить какая дробь больше или меньше.

Приведём дроби alt=”пять вторых” width=”12″ height=”43″ />и к одинаковому (общему) знаменателю. Найдём наименьшее общее кратное (НОК) знаменателей обеих дробей. НОК знаменателей дробей alt=”пять вторых” width=”12″ height=”43″ />и это число 6.

Теперь находим дополнительные множители для каждой дроби. Разделим НОК на знаменатель первой дроби пять вторых. НОК это число 6, а знаменатель первой дроби это число 2. Делим 6 на 2, получаем дополнительный множитель 3. Записываем его над первой дробью:

1631

Теперь найдём второй дополнительный множитель. Разделим НОК на знаменатель второй дроби . НОК это число 6, а знаменатель второй дроби это число 3. Делим 6 на 3, получаем дополнительный множитель 2. Записываем его над второй дробью:

1632

Умножим дроби на свои дополнительные множители:

1633

Мы пришли к тому что дроби, у которых были разные знаменатели, превратились в дроби, у которых одинаковые знаменатели. А как сравнивать такие дроби мы уже знаем. Из двух дробей с одинаковыми знаменателями больше та дробь, у которой числитель больше:

1634

Правило правилом, а мы попробуем разобраться почему 1636больше, чем 1637больше, чем . Для этого выделим целую часть в неправильной дроби 1636. В дроби 1637. В дроби ничего выделять не нужно, поскольку эта дробь уже правильная.

После выделения целой части в дроби 1636, получим следующее выражение:

1638

Теперь можно легко понять, почему 1636больше, чем 1637больше, чем . Давайте нарисуем эти дроби в виде пицц:

1635

2 целые пиццы и 1639пиццы, больше чем 1637пиццы, больше чем пиццы.

Сложение смешанных чисел или смешанных дробей.

Сложение смешанных дробей происходит по закону сложения.

У смешанных дробей складываем целые части с целыми и дробные части с дробными.

Если дробные части смешанных чисел имеют одинаковые знаменатели, то числители складываем, а знаменатель остается тот же.

Сложим смешанные числа (3frac) и (1frac).

Если дробные части смешанных чисел имею разные знаменатели, то находим общий знаменатель.

Выполним сложение смешанных чисел (7frac) и (2frac).

Знаменатель разный, поэтому нужно найти общий знаменатель, он равен 24. Умножим первую дробь (7frac) на дополнительный множитель 3, а вторую дробь (2frac) на 4.

Вопросы по теме:
Как складывать дроби?
Ответ: сначала надо определиться к какому типу относиться выражение: у дробей одинаковые знаменатели, разные знаменатели или смешанные дроби. В зависимости от типа выражения переходим к алгоритму решения.

Как решать дроби с разными знаменателями?
Ответ: необходимо найти общий знаменатель, а дальше по правилу сложения дробей с одинаковыми знаменателями.

Как решать смешанные дроби?
Ответ: складываем целые части с целыми и дробные части с дробными.

Пример №1:
Может ли сумма двух правильных дробей в результате получить правильную дробь? Неправильную дробь? Приведите примеры.

Дробь (frac) это правильная дробь, она является результатом суммы двух правильных дробей (frac) и (frac).

Дробь (frac) является неправильной дроби, она получилась в результате суммы правильных дробей (frac) и (frac).

Ответ: на оба вопроса ответ да.

Пример №2:
Сложите дроби: а) (frac + frac) б) (frac + frac).

Пример №3:
Запишите смешанную дробь в виде суммы натурального числа и правильной дроби: а) (1frac) б) (5frac)

Пример №4:
Вычислите сумму: а) (8frac + 2frac) б) (2frac + frac) в) (7frac + 3frac)

а) (8frac + 2frac = (8 + 2) + (frac + frac) = 10 + frac = 10frac)

Задача №1:
За обедам съели (frac) от торта, а вечером за ужином съели (frac). Как вы думаете торт полностью съели или нет?

Решение:
Знаменатель дроби равен 11, он указывает на сколько частей разделили торт. В обед съели 8 кусочков торта из 11. За ужином съели 3 кусочка торта из 11. Сложим 8 + 3 = 11, съели кусочков торта из 11, то есть весь торт.

Сложение десятичных дробей.

При сложении десятичных дробей процесс записывают «столбиком» (как обычное умножение столбиком), так чтобы одноимённые разряды находились друг под другом без смещения. Запятые обязательно выравниваем чётко друг под другом.

Правила сложения десятичных дробей:

1. Если нужно, уравниваем количество знаков после запятой. Для этого добавляем нули к необходимой дроби.

2. Записываем дроби так, чтобы запятые находились друг под другом.

3. Складываем дроби, не обращая внимания на запятую.

4. Ставим запятую в сумме под запятыми, дробей, которые складываем.

Обратите внимание! Когда у заданных десятичных дробей разное количество знаков (цифр) после запятой, то к дроби, у которой меньше десятичных знаков приписываем нужное количество нулей, для уравнения в дробях число знаков после запятой.

Разберёмся на примере. Найти сумму десятичных дробей:

Уравниваем число знаков после запятой в десятичных дробях. Дописываем 2 нуля справа к десятичной дроби 13,7 .

Дроби. Сложение дробей.

Если сложение десятичных дробей вы освоили достаточно хорошо, то недостающие нули можно дописывать в уме.

4 Приведение дробей к одному знаменателю

Вернемся к сложению дробей с разными знаменателями.

Когда мы приводим дроби к одинаковому знаменателю, равному НОК обоих знаменателей, мы должны умножить числители этих дробей на дополнительные множители. Найти их можно, разделив НОК на знаменатель соответствующей дроби, например:

др29

Таким образом, чтобы привести дроби к одному показателю, нужно сначала найти НОК (то есть наименьшее число, которое делится на оба знаменателя) знаменателей этих дробей, затем поставить дополнительные множители к числителям дробей. Найти их можно, разделив общий знаменатель (НОК) на знаменатель соответствующей дроби. Затем нужно умножить числитель каждой дроби на дополнительный множитель, а знаменателем поставить НОК.

Деление дробей с участием натурального числа.

Это не так страшно, как кажется. Как и в случае со сложением, переводим целое число в дробь с единицей в знаменателе. Например:

Умножение смешанных дробей.

Правила умножения дробей (смешанных):

  • преобразовываем смешанные дроби в неправильные;
  • перемножаем числители и знаменатели дробей;
  • сокращаем дробь;
  • если получили неправильную дробь, то преобразовываем неправильную дробь в смешанную.

Обратите внимание! Чтобы умножить смешанную дробь на другую смешанную дробь, нужно, для начала, привести их к виду неправильных дробей, а далее умножить по правилу умножения обыкновенных дробей.

Дроби. Умножение и деление дробей.

5 Как сложить целое число и дробь

Для того, чтобы сложить целое число и дробь, нужно просто добавить это число перед дробью, при этом получится смешанная дробь, например:

др30

Если мы складываем целое число и смешанную дробь, мы прибавляем это число к целой части дроби, например:

Действия с дробями

С дробями можно выполнять те же действия, что и с обычными числами: складывать, вычитать, умножать и делить. А еще дроби можно сокращать и сравнивать между собой. Давайте попробуем.

Второй способ умножения дроби на натуральное число.

Бывает более удобно использовать второй способ умножения обыкновенной дроби на число.

Обратите внимание! Для умножения дроби на натуральное число необходимо знаменатель дроби разделить на это число, а числитель оставить без изменения.

Дроби. Умножение и деление дробей.

Из, приведенного выше, примера понятно, что этот вариант удобней для использования, когда знаменатель дроби делится без остатка на натуральное число.

Многоэтажные дроби.

В старших классах зачастую встречаются трехэтажные (или больше) дроби. Пример:

Чтобы привести такую дробь к привычному виду, используют деление через 2 точки:

Обратите внимание! В делении дробей очень важен порядок деления. Будьте внимательны, здесь легко запутаться.

Обратите внимание, например:

При делении единицы на любую дробь, результатом будет таже самая дробь, только перевернутая:

Практические советы при умножении и делении дробей:

1. Самым важным в работе с дробными выражениями является аккуратность и внимательность. Все вычисления делайте внимательно и аккуратно, сосредоточенно и чётко. Лучше запишите несколько лишних строчек в черновике, чем запутаться в расчетах в уме.

2. В заданиях с разными видами дробей – переходите к виду обыкновенных дробей.

3. Все дроби сокращаем до тех пор, пока сокращать уже будет невозможно.

4. Многоэтажные дробные выражения приводим в вид обыкновенных, пользуясь делением через 2 точки.

Сокращение дробей

Сокращение дроби — это деление числителя и знаменателя дроби на одно и то же натуральное число. Сократить дробь значит сделать ее короче и проще для восприятия. Например, дробь 1/3 выглядит намного проще и красивее, чем 27/81.

Сокращение дроби выглядит так: зачеркивают числитель и знаменатель, а рядом записывают результаты деления числителя и знаменателя на одно и то же число.

До и после сокращения

В этом примере делим обе части дроби на двойку.

Сравнение дробей

Можно никуда не спешить и сокращать дроби последовательно, в несколько действий.

Сравнение дробей

Сложение и вычитание дробей

При сложении и вычитании дробей с одинаковыми знаменателями к числителю первой дроби прибавляют числитель второй дроби (из числителя первой вычитают числитель второй) и оставляют тот же знаменатель.

Не забудьте проверить, можно ли сократить дробь и выделить целую часть.

Сложение и вычитание дробей в буквенном выражении

При сложении и вычитании дробей с разными знаменателями нужно найти наименьший общий знаменатель, сложить или вычесть полученные дроби (используем предыдущее правило).

    Найдем наименьшее общее кратное для определения единого делителя. Пример

Для этого запишем в столбик числа, которые в сумме дают значения делителей. Далее перемножаем полученное и получаем НОК.

Запись в столбик

НОК (15, 18) = 3 * 2 * 3 * 5 = 90

Полученные числа запишем справа сверху над числителем.

  • если делимое больше делителя, нужно преобразовать в смешанное число;
  • если есть что сократить, нужно выполнить сокращение. Пример результата

Ход решения одной строкой:

Ход решения одной строкой

Сложение или вычитание смешанных чисел можно привести к отдельному сложению их целых частей и дробных частей. Для этого нужно действовать поэтапно:

  1. Сложить целые части.
    Сложение дробей
    Сложение дробей
  2. Сложить дробные части.
    Сложение дробей

Необходимо приводить к общему, если знаменатели разные. Для этого воспользуемся знаниями из предыдущего примера.

Если при сложении дробных частей получилась неправильная дробь, нужно выделить ее целую часть и прибавить к полученной ранее целой части.

Оцените статью
Рейтинг автора
4,8
Материал подготовил
Егор Новиков
Наш эксперт
Написано статей
127
А как считаете Вы?
Напишите в комментариях, что вы думаете – согласны
ли со статьей или есть что добавить?
Добавить комментарий