Формула сопротивления воздуха при движении

Аэродинамическое сопротивление автомобиля

В процессе проектирования и создания конструкторами очень тщательно прорабатывается аэродинамика автомобиля, поскольку она оказывает значительное влияние на технические показатели модели.

При движении автомобиля большая часть мощности силовой установки уходит на преодоление сопротивления, создаваемого воздухом. И правильно созданная аэродинамика автомобиля позволяет уменьшить это сопротивление, а значит на борьбу с противодействием находящего воздушного потока потребуется затратить меньше мощности, и соответственно – топлива.

Измерение аэродинамики автомобиля проводится для изучения сил, создаваемых воздушным потоком и воздействующих на транспортное средство. И таких сил несколько – подъемные и боковые, а также лобовое сопротивление.

Работа силы сопротивления воздуха формула. Сила сопротивления воздуха. Трение частиц воздуха

На сайте вы найдете материалы по механике, молекулярной физике, основам термодинамики, оптике и прочих областях физики. Новости физики, научные обзоры. Учебные материалы. Форум по физике.

Силы действующие на автомобиль при движении

На движущийся автомобиль действует ряд сил, часть из которых направлена по оси движения автомобиля, а часть — под углом к этой оси. Условимся называть первые из этих сил продольными, а вторые боковыми.

Силы действующие на автомобиль при движении

Рис. Схема сил действующих на ведущее колесо.
а — состояние неподвижности; б — состояние движения

Продольные силы могут быть направлены как по ходу, так и против хода движения автомобиля. Силы, направленные по ходу движения, являются движущимися и стремятся продолжить движение. Силы, направленные против хода движения, являются силами сопротивления и стремятся остановить автомобиль.

На автомобиль, движущийся по горизонтальному и прямому участку дороги, действуют следующие продольные силы:

  • тяговая сила
  • сила сопротивления воздуха
  • сила сопротивления качению

При движении автомобиля в гору возникает сила сопротивления подъему, а при разгоне автомобиля—сила сопро­тивления разгону (сила инерции).

Решения задачи

Данные задачи: парашютист пролетел не раскрывая парашюта

Масса парашютиста m 80 кг
Путь парашютиста S=h 200 м
скорость парашютиста $v_$ 50 м
Работа силы сопротивления воздуха на этом пути. $W_$ ?

Составляем уравнение силы тяжести и силы сопротивления воздух

откуда результируещее ускорение от силы тяжести и от силы сопр.воздуха

Ускорение от силы сопротивления воздуха

Работа силы сопротивления воздуха

$ Работа силы сопр. воздуха равна 2152 Дж. $

Чтобы предложить решение пожалуйста войдите или зарегистрируйтесь

Разновидности силы трения

Силы сопротивления бывают разных видов:

  • сила трения качения (P_f) . Зависит от вида и структуры поверхности опоры, скорости перемещения тела, давления окружающей среды и прочих факторов. Коэффициент сопротивления качению (f ) зависим от типа и состояние поверхности опоры, и обратно пропорционален температуре и давлению.
  • сила трения воздуха (лобовое сопротивление) (P_вл) . Появляется из-за разности давлений. Этот показатель зависит от вихреобразований вокруг предмета движения, которые в свою очередь зависят от формы перемещающегося предмета.

Более значимо на сопротивление будет влиять перемещение передней части предмета. Таким образом, при формировании закругления в передней и задней части предмета можно снизить показатель сопротивления до 72%. Сила лобового сопротивления рассчитывается следующим образом:

где (c_x) – коэффициент обтекаемости или лобового сопротивления;
(p) – плотность среды;
(F_в) – площадь лобового сопротивления (миделевого сечения).
Сила трения воздуха направлена противоположно вектору скорости перемещения тела. Ее рассматривают как сконцентрированную силу, приложенную к центру парусности тела, которая может не совпадать с центром его тяжести.

Сложно разобраться самому?

Попробуй обратиться за помощью к преподавателям

По второму закону ньютона сила сопротивления ускорению тела, совершающего поступательные движения, определяется так:

где (m) – масса объекта;
() – ускорение центра масс.

Подъемная и прижимная сила

В результате неравномерного обтекания потоком воздуха автомобиля с разных сторон возникает разница в скорости его движения.

лобовое сопротивление авто

Действующие подъемная и прижимная силы

Автомобиль движется и рассекает поток воздуха, при этом часть этого потока уходит под авто и проходит под днищем, то есть движется практически по прямой. А вот верхней части потока приходится повторять форму кузова, и ей приходится проходить большее расстояние. Из-за этого возникает разница в скорости воздуха – верхняя часть движется быстрее нижней, проходящей под авто. А поскольку увеличение скорости сопровождается снижением давления, то под днищем образуется зона повышенного давления, которая приподнимает машину.

Проблем добавляет и лобовое сопротивление. Область повышенного давления воздушной массы перед машиной прижимает передок к дороге, в то время как разрежение и завихрения позади наоборот – способствуют приподнятию кузова. Подъемная сила, как и лобовое сопротивление, возрастает при увеличении скорости движения.

Но эта сила может оказывать и положительное действие. При внесении корректив в конструкцию авто возможно преобразование подъемной силы в прижимную, которая будет обеспечивать лучшее сцепление с дорогой, устойчивость авто, его управляемость на высоких скоростях.

При этом для получения прижимной силы не требуется каких-либо отдельных решений. Все разработки, направленные на снижение коэффициента Сх также сказываются и на прижиме. К примеру, оптимизация формы задней части приводит к уменьшению завихрений и разрежения, из-за чего подъемная сила тоже снижается, а прижимная — повышается. Установка заднего спойлера действует таким же образом.

сопротивление воздуха

Уменьшение завихрений при установке спойлера

Боковые же силы при установлении аэродинамики автомобиля, особо в расчет не берутся, в силу того, что они не постоянны, а также значительного влияния на показатели авто не оказывают.

Но это все теория аэродинамики автомобиля. На практике все можно пояснить одним предложением — чем хуже аэродинамика, тем выше расход топлива.

Теломассой 1 кг бросили вертикально вниз с высоты 40 м с начальной скоростью 10 м/с.Определите среднее значение силы сопротивления воздуха при движении тела, еслиего скорость в момент падения на поверхность Земли 20 м/с.

Решение.

blog-fiz-blogspot-com-1.PNG

blog-fiz-blogspot-com-3.PNG

blog-fiz-blogspot-com-2.PNG

blog-fiz-blogspot-com-5.PNG

Численно: F= 6.3 H.

Источник: Физика. Полный курс подготовки к ЦТ. Под общей редакцией проф. В.А. Яковенко.

Сила сцепления колес с дорогой

Трение, возника­ющее между ведущими колесами автомобиля и дорогой, называется силой сцепления. Сила сцепления равна произведению коэф­фициента сцепления на сцепной вес, т. е. вес, приходящийся на ведущие колеса автомобиля. Величина коэффициента сцепления шин с дорогой зависит от качества и состояния дорожного покрытия, формы и состояния рисунка протектора шины, давления воздуха в шине.

У легковых автомобилей полный вес рас­пределяется по осям примерно поровну. Поэтому сцепной вес его можно принять равным 50% полного веса. У грузовых автомоби­лей при полной их на­грузке сцепной вес (вес, приходящийся на заднюю ось) составляет примерно 60—70% полного веса.

Величина коэффициента сцепления имеет большое значение для эксплуатации автомобиля и безопасности движения, так как от него зависят проходимость автомобиля, тормозные качества, возможность, пробуксовки и заноса ведущих колес. При незначи­тельном коэффициенте сцепления трогание автомобиля с места со­провождается пробуксовкой, а торможение — скольжением колес. В результате автомобиль иногда не удается тронуть с места, а при торможении происходит резкое увеличение тормозного пути и возникновение заноса.

На асфальтобетонных покрытиях в жаркую погоду на поверх­ность выступает битум, делая дорогу маслянистой и более скольз­кой, что снижает коэффициент сцепления. Особенно сильно снижается коэффициент сцепления при смачивании дороги первым дождем, когда образуется еще не смытая пленка жидкой грязи. Заснежённая или обледенелая дорога особенно опасна в теплую погоду, когда поверхность подтаивает.

При увеличении скорости движения коэффициент сцепления снижается, в особенности на мокрой дороге, так как выступы ри­сунка протектора шины не успевают продавливать пленку влаги.

Исправное состояние рисунка протектора шины имеет большое значение при движении по грунтовым дорогам, снегу, песку, а также по дорогам с твердым покрытием, по покрытым пленкой грязи или воды. Благодаря наличию выступов рисунка опорная площадь шины уменьшается и, следовательно, возрастает удельное давление на поверхность дороги. При этом легче продавливается грязевая пленка и восстанавливается контакт с дорожным покрытием, а на легком грунте происходит непосредственное зацепление выступов рисунка за грунт.

Повышенное давление воздуха в шине уменьшает ее опорную поверхность, вследствие чего удельное давление возрастает на­столько, что при трогании с места и при торможении может произойти разрушение резины и сцепление колес с дорогой уменьшается.

Таким образом, величина коэффициента сцепления зависит от многих условий и может изменяться в довольно значительных пределах. Так как много дорожно-транспортных происшествий происходит из-за плохого сцепления, то водители должны уметь приблизительно оценивать величину коэффициента сцепления и выбирать скорость движения и приемы управления в соответствии с ним.

Силы трения при высоких скоростях перемещения тел

При небольших скоростях перемещения тел силы сопротивления зависят от скорости такого перемещения, вязкости среды и размеров тела. А вот при высоких скоростях все обстоит немного по-другому.
В воздухе и воде законы вязкости в данном случае не дают полную картину. Даже при скорости в (1 см/с) эти законы действуют только для небольших тел.

Если движение тела медленное, то жидкость плавно обтекает тело, и в данном случае силу сопротивления можно приравнять к силе вязкого трения.

При высокой скорости движения тела за ним возникает сложное движение среды. Здесь появляются и исчезают различные струи, потоки, формирующие необычные фигуры завихрений. Данное движение называется турбулентным.

Сила турбулентного сопротивления зависит немного по-другому от скорости и размеров объекта, нежели при вязком трении. Данная величина будет пропорциональна квадратам скорости и размеров тела. Вязкостью среды пренебрегают, а вот ее плотность имеет значение. Силу турбулентного сопротивления определяют так:

(F=pv^2 L^2,) где (v) – скорость перемещения тела;
(L) – размеры тела;
(p) – плотность среды.

Что ещё влияет на аэродинамику?

Конечно, конструкторы стараются по максимуму снизить сопротивление авто при движении и повысить прижимную силу. Но особенности эксплуатации авто и свой взгляд автовладельцев на внешние особенности машины вносят свои коррективы, причем в некоторых случаях – значительны.

таблица необходимой мощности в зависимости от скорости автомобиля

Аэродинамическое сопротивление разных автомобилей в зависимости от скорости

К примеру, установка багажника на крышу, даже с аэродинамической формой увеличивает поперечную проекцию авто и сильно влияет на обтекаемость, это сразу сказывается на потреблении топлива.

Также расход повышается от езды с открытыми окнами и люком, использование защитных и декоративных обвесов, перевозка негабаритных грузов, выступающих за авто, нарушение положения конструктивных элементов, расположенных под днищем, повышение клиренса.

Но автовладелец также может и внести коррективы, которые положительно повлияют на аэродинамику автомобиля. К ним относится использование аэродинамических обвесов, установка спойлера, уменьшение клиренса.

Ответ или решение 1

Для расчета значения работы, выполненной силами сопротивления воздуха, воспользуемся формулой: Aсопр = Ek – Ep = m * Vн2 / 2 – m * g * h.

Постоянные и переменные: m — масса брошенного тела (m = 1 кг); Vн — начальная скорость (скорость броска; Vн = 10 м/с); g — ускорение свободного падения (g ≈ 10 м/с2); h — высота подъема (h = 4 м).

Расчет: Aсопр = m * Vн2 / 2 – m * g * h = 1 * 102 / 2 – 1 * 10 * 4 = 10 Дж.

Ответ: Работа, совершенная силами сопротивления воздуха, составляет 10 Дж.

  • Копировать с других сайтов запрещено. Стикеры и подарки за такие ответы не начисляются. Используй свои знания. ????
  • Публикуются только развернутые объяснения. Ответ не может быть меньше 110 символов!

Хочешь выучивать по 10 английских слов в день?

Выбирай верные определения слов и продвигайся в рейтинге игроков. Чем больше слов запоминаешь, тем выше результат!

Сила сопротивления подъему

F п =G а sinα.

В дорожной практикевеличину уклона обычно оцениваютвеличиной подъема полотна дороги,отнесенную к величине горизонтальнойпроекции дороги, т.е. тангенсом угла, иобозначают i, выражая полученное значение в процентах.При относительно небольшой величинеуклона допустимо в расчетных формулахпри определении силы сопротивленияподъему использовать не sinα., а величину iв относительныхзначениях. При больших значенияхвеличины уклона замена sinα величиной тангенса (i/100)недопустима.

Поломка прибора помогла решить 60-летнюю квантовую загадку

Около 60 лет назад американский ученый-физик и лауреат Нобелевской премии Николас Бломберген (Nicolaas Bloembergen) предсказал возможность существования такого явления, как ядерный электрический резонанс. Однако, вплоть до последнего времени еще никому не удавалось продемонстрировать это явление вживую.

Работа: не совсем то, о чем вы подумали

Итак, работа ​ ( W ) ​ — это произведение прилагаемой силы ​ ( mathbf ) ​ и перемещения ( mathbf ) , выполняемого этой силой. Точнее говоря речь идет о проекции прилагаемой силы на направление перемещения, т.е. ​ ( W=Fscostheta ) ​, где ​ ( theta ) ​ — угол между векторами силы ( mathbf ) и перемещения ( mathbf ) . С точки зрения физика, работа равна произведению компоненты силы в направлении перемещения и величины перемещения.

Прежде чем переходить к подробному рассмотрению особенностей работы, познакомимся с единицами измерения работы в разных системах единиц измерения.

Сопротивление при нулевой подъёмной силе [ править | править код ]

Эта составляющая сопротивления не зависит от величины создаваемой подъёмной силы и складывается из профильного сопротивления крыла, сопротивления элементов конструкции самолёта, не вносящих вклад в подъёмную силу, и волнового сопротивления. Последнее является существенным при движении с около- и сверхзвуковой скоростью, и вызвано образованием ударной волны, уносящей значительную долю энергии движения. Волновое сопротивление возникает при достижении самолётом скорости, соответствующей критическому числу Маха, когда часть потока, обтекающего крыло самолёта, приобретает сверхзвуковую скорость. Критическое число М тем больше, чем больше угол стреловидности крыла, чем более заострена передняя кромка крыла и чем оно тоньше.

Сила сопротивления направлена против скорости движения, её величина пропорциональна характерной площади S, плотности среды ρ и квадрату скорости V:

F = C F ρ V 2 2 S >>S> C F > — безразмерный аэродинамический коэффициент сопротивления, получается из критериев подобия, например, чисел Рейнольдса и Фруда в аэродинамике.

Определение характерной площади зависит от формы тела:

  • в простейшем случае (шар) — площадь поперечного сечения;
  • для крыльев и оперения — площадь крыла/оперения в плане;
  • для пропеллеров и несущих винтов вертолётов — либо площадь лопастей, либо ометаемая площадь винта;
  • для подводных объектов обтекаемой формы — площадь смачиваемой поверхности;
  • для продолговатых тел вращения, ориентированных вдоль потока (фюзеляж, оболочка дирижабля) — приведённая волюметрическая площадь, равная V2/3, где V — объём тела.

Мощность, требуемая для преодоления данной составляющей силы лобового сопротивления, пропорциональна кубу скорости ( P = F ⋅ V = C F ρ V 3 2 S >>S> ).

Центр тяжести

На автомобиль, как и на любое другое тело, действует сила тяжести, направленная вертикально вниз. Центром тяжести автомобиля называют такую точку автомобиля, от которой вес автомобиля распределяется равномерно во всех направлениях. У автомобиля центр тяжести располагается между передней и задней осью на высоте около 0,6 м для легковых и 0,7—1,0 м для гру­зовых. Чем ниже расположен центр тяжести, тем устойчивее авто­мобиль против опрокидывания. При загрузке автомобиля грузом центр тяжести поднимается у легковых автомобилей примерно на 0,3—0,4 м, а у грузовых на 0,5 м и более в зависимости от рода груза. При неравномерном укладывании груза центр тяжести может также сместиться вперед, назад или в сторону, при этом будут нарушаться устойчивость автомобиля и легкость управления.

Сторонняя сила

Тем не менее, ток по цепи идёт; стало быть, имеется сила, «протаскивающая» заряд сквозь источник вопреки противодействию электрического поля клемм (рис. 1 ).

Рис. 1. Сторонняя сила

Эта сила называется сторонней силой; именно благодаря ей и функционирует источник тока. Сторонняя сила не имеет отношения к стационарному электрическому полю — у неё, как говорят, неэлектрическое происхождение; в батарейках, например, она возникает благодаря протеканию соответствующих химических реакций.

Обозначим через работу сторонней силы по перемещению положительного заряда q внутри источника тока от отрицательной клеммы к положительной. Эта работа положительна, так как направление сторонней силы совпадает с направлением перемещения заряда. Работа сторонней силы называется также работой источника тока.

Во внешней цепи сторонняя сила отсутствует, так что работа сторонней силы по перемещению заряда во внешней цепи равна нулю. Поэтому работа сторонней силы по перемещению заряда вокруг всей цепи сводится к работе по перемещению этого заряда только лишь внутри источника тока. Таким образом, — это также работа сторонней силы по перемещению заряда по всей цепи.

Мы видим, что сторонняя сила является непотенциальной — её работа при перемещении заряда по замкнутому пути не равна нулю. Именно эта непотенциальность и обеспечивает циркулирование электрического тока; потенциальное электрическое поле, как мы уже говорили ранее, не может поддерживать постоянный ток.

Опыт показывает, что работа прямо пропорциональна перемещаемому заряду . Поэтому отношение уже не зависит от заряда и является количественной характеристикой источника тока. Это отношение обозначается :

Данная величина называется электродвижущей силой (ЭДС) источника тока. Как видим, ЭДС измеряется в вольтах (В), поэтому название «электродвижущая сила» является крайне неудачным. Но оно давно укоренилось, так что приходится смириться.

Когда вы видите надпись на батарейке: «1,5 В», то знайте, что это именно ЭДС. Равна ли эта величина напряжению, которое создаёт батарейка во внешней цепи? Оказывается, нет! Сейчас мы поймём, почему.

Молекулы впервые охладили до рекордно низкой температуры

Нобелевский лауреат Вольфганг Кеттерле и его коллеги охладили молекулы, которые состоят из атомов щелочных металлов, до сверхнизкой температуры в 220 нанокельвин. Это в 20 раз ниже предыдущего рекорда.

Физики впервые вычислили предел текучести жидкости

Российские и британские ученые впервые вывели одно из фундаментальных уравнений физики, позволяющее теоретически вычислить предел, до которого жидкость остается жидкостью. Уравнение основано на фундаментальных природных константах.

Выбор редактора

  • Астрофизики прояснили природу загадочного «Объекта Ханни»

Астрофизики прояснили природу загадочного «Объекта Ханни»

В этом году загадке «Объекта Ханни» исполнилось ровно 10 лет: в 2007 г. …

Молнию поймали за созданием радиоактивных изотопов

Японские физики впервые пронаблюдали «живьем» предсказанное теоретиками …

Ученые научились создавать кольца стабильной плазмы в условиях открытого воздуха

В многочисленных научно-фантастических фильмах достаточно часто мелькают…

Оцените статью
Рейтинг автора
4,8
Материал подготовил
Егор Новиков
Наш эксперт
Написано статей
127
А как считаете Вы?
Напишите в комментариях, что вы думаете – согласны
ли со статьей или есть что добавить?
Добавить комментарий