Допуск на угловой размер по 14 квалитету

Дополнительные варианты назначения предельных отклонений линейных размеров с неуказанными допусками

А.1 Настоящее приложение устанавливает дополнительные варианты предельных отклонений линейных размеров с неуказанными допусками, нашедшие применение в промышленности.

Кроме симметричных предельных отклонений, установленных в основной части стандарта, в дополнение к ИСО 2768-1 допускается применение односторонних предельных отклонений для размеров отверстий и валов по квалитетам ГОСТ 25346 и ГОСТ 25348 (дополнительный вариант 1) или классам точности настоящего стандарта (дополнительный вариант 2) в соответствии с таблицей .

Назначение дополнительных вариантов предельных отклонений линейных размеров с неуказанными допусками при новом проектировании рекомендуется ограничить.

Таблица А.1 — Дополнительные варианты неуказанных предельных отклонений линейных размеров

Класс точности

Обозначения предельных отклонений

размеров отверстий

размеров валов

размеров элементов, не относящихся к отверстиям и валам

± t1/2 (или ± IT12/2)

± t2/2 (или ± IT14/2)

± t3/2 (или ± IT16/2)

Очень грубый

± t4/2 (или ± IT17/2)

Очень грубый

А.2 Предельные отклонения по квалитетам (Н, h, ± IT/2) должны соответствовать ГОСТ 25346 и ГОСТ 25348.

Симметричные предельные отклонения по классам точности (± t/2) должны соответствовать приведенным в таблице , при этом обозначение ± t1/2 соответствует обозначению f, ± t2/2 — т, ± t3/2 — с, ± t4/2 — v.

Односторонние предельные отклонения (+t, —t) должны соответствовать приведенным в таблице .

Таблица А.2 — Односторонние предельные отклонения линейных размеров, кроме притупленных кромок (наружных радиусов скругления и высот фасок, см. таблицу ) по классам точности

Размеры в миллиметрах

Класс точности

Обозначение предельных отклонений

Предельные отклонения для интервалов номинальных размеров

св. 30 до 120

св. 120 до 400

св. 400 до 1000

св. 1000 до 2000

св. 2000 до 4000

св. 4000 до 6000

св. 6000 до 8000

св. 8000 до 10000

Очень грубый

А.3 Неуказанные предельные отклонения размеров притупленных кромок (наружных радиусов скругления и высот фасок) и угловых размеров для дополнительных вариантов должны соответствовать приведенным в таблицах и для соответствующих классов точности.

А.4 Ссылка на общие допуски с применением вариантов предельных отклонений линейных размеров, предусмотренных настоящим приложением, должна содержать номер настоящего стандарта и обозначения предельных отклонений согласно таблице . Примеры (для класса точности средний):

«Общие допуски по ГОСТ 30893.1: Н14, h14, ± t2/2» или

«Общие допуски по ГОСТ 30893.1: Н14, h14, ± IТ14/2»

«Общие допуски по ГОСТ 30893.1: + t2, — t2, ± t2/2»

Квалитеты точности в машиностроении

Изначально производство было единоличным делом. Один человек изготавливал какой-либо механизм от начала и до конца, не прибегая к посторонней помощи. Соединения подгонялись в индивидуальном порядке. На одной фабрике невозможно было найти 2 одинаковые детали. Так продолжалось вплоть до середины 18 века, пока люди не осознали эффективность разделения труда. Это дало большую производительность, но следом возник вопрос о взаимозаменяемости изделий. Для этого разработали систему нормирования уровней точности изготовления деталей. В ЕСДП установлены квалитеты (иначе степени точности).

Гост 30893.1-2002. основные нормы взаимозаменяемости. общие допуски. предельные отклонения линейных и угловых размеров с неуказанными допусками

Указание отклонений на чертежах производится с помощью текстовых записей на полях, в специально предназначенных для этого местах, а также условными обозначениями.

Текстовые записи чаще всего используют в тех случаях, когда применение условных обозначений грозит привести к «затемнению» чертежа, или в тех случаях, когда только с их помощью можно в полном объеме указать технические требования к детали.

Текстовые записи включают в себя такие обязательные элементы, как краткое наименование предусмотренного разработчиками отклонения, а также наименование элемента или его буквенное обозначение. Величины предельных отклонений номинируются в миллиметрах. В тех случаях, когда помечаются отклонения, относящиеся к взаимному расположению поверхностей, то в обязательном порядке указываются те базы, относительно которых они задаются. Это могут быть плоскости симметрии, общие оси, линии и т.п.

Чтобы те допуски, которые относятся к расположению поверхностей и отклонениям форм, не были перемешаны с другими допусками, их указывают в специальных рамках прямоугольной формы, соединенных выносными или другими линиями с контурными линиями поверхностей, осями симметрии или размерными линиями. При этом рамки делятся на две или три части, в первой из которых указывается символ отклонения, во второй – его предельная величина, а в третьей (при необходимости) – обозначение базовой поверхности.

Квалитет

Квалитет (в русском от нем. Qualität, которое от лат. qualitas — качество) — характеристика точности изготовления изделия (детали), определяющая значения допусков.

Квалитет является мерой точности. С увеличением квалитета допуск увеличивается, а точность понижается.

  • Допуск по квалитету обозначается буквами IT с указанием номера квалитета, например IT8 — допуск по 8-му квалитету.
    • Квалитеты с 01 до 4-го используются для изготовления калибров и контркалибров.
    • Квалитеты от 5-го до 12-го применяют для изготовления деталей, образующих сопряжения — относительные положения составных частей изделия, характеризуемые соприкосновением их поверхностей или зазором между ними, заданными конструкторской документацией. Примером таких сопряжений могут быть, ГЦС — гладкие цилиндрические соединения).
    • Квалитеты от 13-го до 17-го используют для параметров деталей, не образующих сопряжений и не оказывающих определяющего влияния.
    • IT, мкм = K * i,
    • где K — квалитет (число единиц допуска), i — единица допуска, мкм.

    Значение допусков для размеров основного отверстия до 500 мм:

    Размер, мм Допуск, мкм, при квалитете
    01 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
    До 3 0,3 0,5 0,8 1,2 2 3 4 6 10 14 25 40 60 100 140 250 400 600 1000
    3—6 0,4 0,6 1 1,5 2,5 4 5 8 12 18 30 48 75 120 180 300 480 750 1200
    6—10 0,4 0,6 1 1,5 2,5 4 6 9 15 22 36 58 90 150 220 360 580 900 1500
    10—18 0,5 0,8 1,2 2 3 5 8 11 18 27 43 70 110 180 270 430 700 1100 1800
    18—30 0,6 1 1,5 2,5 4 6 9 12 21 33 52 84 130 210 330 520 840 1300 2100
    30—50 0,6 1 1,5 2,5 4 7 11 16 25 39 62 100 160 250 390 620 1000 1600 2500
    50—80 0,8 1,5 2 3 5 8 13 19 30 46 74 120 190 300 460 740 1200 1900 3000
    80—120 1 1,5 2,5 4 6 10 15 22 35 54 87 140 220 350 540 870 1400 2200 3500
    120—180 1,2 2 3,5 5 8 12 18 25 40 63 100 160 250 400 630 1000 1600 2500 4000
    180—250 2 3 4,5 7 10 14 20 29 46 72 115 185 290 460 720 1150 1850 2900 4600
    250—315 2,5 4 6 8 12 16 23 32 52 81 130 210 320 520 810 1300 2100 3200 5200
    315—400 3 5 7 9 13 18 25 36 57 89 140 230 360 570 890 1400 2300 3600 5700
    400—500 4 6 8 10 15 20 27 40 63 97 155 250 400 630 970 1550 2500 4000 6300

    Нормирование уровней точности

    Разработка методов стандартизации производства — сюда входят допуски, посадки, квалитеты точности – осуществляется метрологическими службами. Прежде чем приступить непосредственно к их изучению, нужно понимать смысл слова «взаимозаменяемость». Что скрывается под этим определением?

    Взаимозаменяемость — это свойство деталей собираться в единый узел и выполнять свои функции без проведения их механической обработки. Условно говоря, одна деталь изготавливается на одном заводе, другая на втором, и при этом они могут быть собраны на третьем и подходить друг к другу.

    Целью такого разделения является повышение производительности, которое образуется в силу следующих причин:

    • Развитие кооперирования и специализации. Чем более разнообразна номенклатура производства, тем больше времени необходимо для наладки оборудования под каждую конкретную деталь.
    • Сокращение разновидностей инструмента. Меньшее количество типов инструмента также повышает эффективность изготовления механизмов. Происходит это по причине сокращения времени на его замену в процессе производства.

    квалитет понятие

    Виды допусков расположения

    Соблюдение всех размеров, разрешённых отклонений, указанных на рабочих чертежах, определяет качественную и долговечную работу собранного агрегата. С этой целью задают допуски расположения. Они определяют взаимное ориентирование и расстояния между отдельными плоскостями соседних деталей. К ним относятся следующие параметры:

    • параллельности и перпендикулярности;
    • угла наклона образованного поверхностями двух соседних деталей;
    • соосности (стабильность расстояний между валами);
    • пересечение осей;
    • симметричности (степень сохранения симметрии одной части детали относительно другой).

    Допуск расположения необходим при сборке отдельных деталей устанавливаемых в готовый агрегат. Его делят на две категории: зависимый и независимый.

    Отклонения и допуски расположения

    От точного места взаимного расположения отдельных деталей зависит его правильное и длительное функционирование. Обеспечение правильности сборки определяет допуск расположения. Он устанавливает приемлемое ограничение параметров соседних поверхностей. Это ограничение задаётся специально выделенным полем. Отклонения расположения соседних поверхностей могут быть независимы друг от друга.

    Суммарные допуски

    Все виды разрешённых отклонений, указываются для конкретной части изделия. Отмеченные данные суммируются. Полученный результат называется суммарным допуском. К нему относятся:

    • параметры различных биений (радиального, торцового);
    • результирующие характеристики формы обработанной заготовки.

    Итоговое значение определяется как расположение контрольных точек вдоль заданной прямой или линии более высокого порядка.

    Прямолинейные направляющие

    В процессе эксплуатации некоторых деталей и узлов оптико-механических приборов, возникает необходимость в их перемещении с прямолинейным или вращательным вектором движения.

    Возвратно-поступательные движения в процессе измерений, которые совершают детали, например такие как: визирная сетка, стол для юстировки оптических изделий, микрометрические узлы и пр., требуют весьма жёстких параметров допуска прямолинейности.

    Детали, которые обеспечивают перемещение по сопрягаемым поверхностям других сегментов деталей в определённом направлении, называются направляющими.

    У направляющих деталей есть виды, которые определяют характер изделия. По виду движения детали делятся на направляющие прямолинейного движения и направляющие, которые совершают вращательные движения. По способу перемещения направляющие делятся на детали, работающие в режиме скольжения и детали, используемые для передвижения качением.

    Одним из условий нормальной работы оборудования является прямолинейность перемещений рабочих органов, что в первую очередь зависит от прямолинейности направляющих, а так как большинство поверхностей деталей машин задействованы для различного рода, перемещений сопрягаемых кинематических элементов, их контроль является наиболее трудоёмкой частью работы по обеспечению качества.

    Направляющие прямолинейного движения, как правило, выполнены в форме призматического или цилиндрического профиля, которые обеспечивают прямолинейность перемещений рабочих элементов станка в заданном направлении и принимают воздействующие на них определённой силы.

    В ходе испытания станка на точность, в первую очередь, проверяют характер работы основных механизмов. Сюда относится погрешность вращения шпинделей, прямолинейность или плоскостность направляющих элементов, поверхностей столов, прямолинейность перемещения суппорта, работоспособность ходового винта станка и прочее.

    Далее, проверяют соответствие взаимного положения и функционирования узлов и элементов станка. К данному контролю относится параллельность или перпендикулярность базовых направляющих или поверхностей рабочих столов и осей шпинделей.

    Сюда же относятся отклонения параметров отклонений шпинделей, например параллельность шпинделя станка и вала внутришлифовального устройства или допуск соосности шпинделя токарного станка и осевого положения пиноли задней бабки.

    При контроле точности станков, устанавливаемых на опоры в количестве более трёх точек, необходимо проверять прямолинейность перемещения в рабочей плоскости и отсутствие перекосов узлов при перемещении.
    Все виды направляющих, используемые в тех или иных условиях, должны отвечать стандартным техническим требованиям: иметь необходимую точность, плавность движения, минимальное трение и соответственно малый износ.

    Такие условия обеспечиваются за счет выбора качественных материалов сопрягаемых деталей со сходными параметрами, способом обработки, способствующим образованию малой величины шероховатости, а также за счет применения инновационных смазок.

    Предельные отклонения размеров деталей в сборе

    Те предельные отклонения размеров, которые имеют детали, обозначенные на сборочных чертежах, принято, согласно действующим правилам, указывать в виде дробных чисел. При этом в их знаменателях ставятся условные обозначения поля допуска вала, а в числителях — условные обозначения поля допуска отверстия. Для примера:

    Такие обозначения чрезвычайно широко распространены в технике, поскольку без их использования оказывается очень непросто производить сборку различных устройств, машин и механизмов, имеющих достаточно сложную конструкцию и состоящих из немалого количества деталей.

    Предельные отклонения размеров деталей в виде дроби

    Предельные отклонения размеров отверстия и вала

    Предельные отклонения размеров деталей в сборе

    Во многих случаях те предельные отклонения размеров, которые имеют детали, изображенные на сборочных чертежах, указываются в виде записей. При этом они обозначаются только для одной из тех деталей, которые имеются в сопряжении. В таких случаях составители чертежей в обязательном порядке должны пояснить то, к какой именно детали из изображенных на сборочном чертеже относятся обозначенные отклонения.

    Предельные отклонения размеров деталей в сборе с пояснениями

    Допуск перпендикулярности

    Допуск перпендикулярности поверхности относительно базовой поверхности.

    Допуск перпендикулярности боковой поверхности 0,02мм относительно базовой плоскости А. Отклонение перпендикулярности – это отклонение угла между плоскостями от прямого угла (90°), выраженное в линейных единицах D на длине нормируемого участка L.

    Рис 23. Схема замера отклонения перпендикулярности

    Замер можно проводить несколькими индикаторами выставленными на «0» по эталону.

    Допуск перпендикулярности оси отверстия относительно поверхности в диаметральном выражении 0,01 мм на радиусе замера R = 40 мм.

    Рис 24. Схема замера отклонения перпендикулярности оси

    Допуск перпендикулярности назначается на поверхности, определяющей функционирование изделия. Например: для обеспечения равномерного зазора или плотного прилегания по торцам изделия, перпендикулярности осей и плоскости технологических приспособлений, перпендикулярности направляющих и т.д.

    Допуски формы

    Этот вид разрешённых отклонений вызван неточностями обработки, которые происходят из-за реальных возможностей обрабатывающего оборудования.

    К ним относятся:

    • прямолинейности;
    • плоскости;
    • не совпадения формы окружности (к ним относятся: круглости; допуск овальности);
    • изменение формы цилиндра — допуск цилиндричности.

    К первой категории относятся следующие отклонения:

    • формы обработанной поверхности (нарушается плоскостная картина, изменяется величина радиуса выточенного вала, нарушается геометрия фигур имеющих плоские грани);
    • нарушается параллельность и перпендикулярное расположение поверхностей между собой или соседними деталями;
    • проявляется разная шероховатость по длине, поперечному сечению, окружности.

    Оценка величины параметров производится сравнением номинальной поверхности (обозначенной на чертеже) и реальной (полученной на станках заданного класса точности). Полученные отклонения и позволяют рассчитать величину требуемого допуска.

    Изменение величины радиуса готового изделия по отношению к заданному на чертеже, называется нарушение круглости. Для предотвращения возможных негативных последствий при эксплуатации вводят допуск круглости. При рассмотрении детали в одной из плоскостей определяют необходимый допуск профиля продольного сечения.

    Характер взаимного искривления расположения плоскостей подразделяется на следующие виды:

    • общей параллельности (сравнивается с линией направленной вдоль поверхности);
    • перпендикулярности и пересечения осей (проверяется сохранение прямого угла на всём протяжении поверхностей);
    • наклона;
    • симметрии (по отношению к выбранной оси).

    Допуск плоскостности определяет величину разрешённого отклонения от обозначенного уровня. Основной характеристикой служит так называемое поле допуска. Его обозначают в выбранной области, которая расположена между плоскостями, для которых необходимо соблюдать строгие параметры параллельности. Расстояние до поверхности определяется существующими стандартами. Контроль отклонения этих параметров от заданных на чертеже обозначается на профилограмме.

    Допуски цилиндричности, круглости, профиля продольного сечения

    Интервалы
    номинальных размеров, мм
    степень точности
    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
    мкм мм
    ≤ 3 0,3 0,5 0,8 1,2 2 3 5 8 12 20 30 50 0,08 0,12 0,2 0,3
    > 3
    ≤ 10
    0,4 0,6 1 1,6 2,5 4 6 10 16 25 40 60 0,1 0,16 0,25 0,4
    > 10
    ≤ 18
    0,5 0,8 1,2 2 3 5 8 12 20 30 50 80 0,12 0,2 0,3 0,5
    > 18
    ≤ 30
    0,6 1 1,6 2,5 4 6 10 16 25 40 60 100 0,16 0,25 0,4 0,6
    > 30
    ≤ 50
    0,8 1,2 2 3 5 8 12 20 30 50 80 12 0,2 0,3 0,5 0,8
    > 50
    ≤ 120
    1 1,6 2,5 4 6 10 16 25 40 60 100 160 0,25 0,4 0,6 1
    > 120
    ≤ 250
    1,2 2 3 5 8 12 20 30 50 80 120 200 0,3 0,5 0,8 1,2
    >
    250 ≤ 400
    1,6 2,5 4 6 10 16 25 40 60 100 160 250 0,4 0,6 1 1,6
    >
    400 ≤ 630
    2 3 5 8 12 20 30 50 80 120 200 300 0,5 0,8 1,2 2
    > 630 ≤
    1000
    2,5 4 6 10 16 25 40 60 100 160 250 400 0,6 1 1,6 2,5
    > 1000 ≤
    1600
    3 5 8 12 20 30 50 80 120 200 300 500 0,8 1,2 2 3
    > 1600
    ≤ 2500
    4 6 10 16 25 40 60 100 160 250 400 600 1 1,6 2,5 4

    Примечание. Под номинальным размером понимается номинальный
    диаметр поверхности

Оцените статью
Рейтинг автора
4,8
Материал подготовил
Егор Новиков
Наш эксперт
Написано статей
127
А как считаете Вы?
Напишите в комментариях, что вы думаете – согласны
ли со статьей или есть что добавить?
Добавить комментарий