Асинхронный двигатель преимущества и недостатки

Содержание

Чем отличается синхронный двигатель от асинхронного?

Основная задача электродвигателя – преобразовывать электрическую энергию в механическую. Сегодня электродвигатели изготавливаются как постоянного, так и переменного тока. Среди двигателей переменного тока лидируют асинхронные и синхронные двигатели. Асинхронные двигатели малой и средней мощности относятся к группе наиболее часто используемых электродвигателей. Они широко используются как в промышленности, так и в бытовой технике.

В промышленности чаще всего используются асинхронные двигатели трехфазные. Они используются, например, в энергетике – в качестве приводов для собственных нужд электростанций, в строительстве, на транспорте, в коммунальном хозяйстве – в качестве приводов насосов водоснабжения и т. д.

Асинхронный двигатель принцип работы

Среди разнообразия выпускаемых на сегодняшний день типов электрических моторов большое распространение получили асинхронные двигатели. Их мощность и эффективность обеспечивает использование в деревообрабатывающей и металлообрабатывающей промышленности, в насосных агрегатах, на фабриках, в станках и ручном электрическом инструменте.

асинхронный трехфазный двигатель

Устройство электродвигателя переменного тока

Электрические двигатели – это силовые машины, применяющиеся для превращения электрической энергии в механическую. Общая классификация разделяет их по типу питающего тока на двигатели постоянного и переменного тока. В статье ниже рассматриваются электрические двигатели со спецификацией под переменный ток, их виды, отличительные характеристики и преимущества.

Для общей информации, рекомендуем прочитать нашу отдельную статью о принципах работы электродвигателей.

Электродвигатель переменного тока

Асинхронный двигатель с короткозамкнутым ротором

Учитывая то, что электроснабжение традиционно осуществляется путём доставки потребителям переменного тока, понятно стремление к созданию электромашин, работающих на поставляемой электроэнергии. В частности, переменный ток активно используется в асинхронных электродвигателях, нашедших широкое применение во многих областях деятельности человека. Особого внимания заслуживает асинхронный двигатель с короткозамкнутым ротором, который в силу ряда причин занял прочные позиции в применении.

Секрет такой популярности состоит, прежде всего, в простоте конструкции и дешевизне его изготовления. У электромоторов на короткозамкнутых роторах есть и другие преимущества, о которых вы узнаете из данной статьи. А для начала рассмотрим конструктивные особенности этого типа электрических двигателей.

Асинхронный электродвигатель: устройство, принцип работы, виды

Одним из наиболее распространенных типов электрических машин в мире является асинхронный электродвигатель. За счет высокой надежности и неприхотливости в работе такие агрегаты получили широкое распространение в самых различных отраслях промышленности и сельского хозяйства, они помогают решать бытовые и общепроизводственные задачи любой сложности. Поэтому в данной статье мы детально рассмотрим особенности асинхронных двигателей.

Асинхронный электродвигатель — преимущества и недостатки

Основными потребителями мировой электроэнергии (более 60% — 65%) являются электромеханические системы — электроприводы, работающие в различных промышленных, транспортных и бытовых механизмах и агрегатах. Асинхронный двигатель является наиболее широко применяемым среди всех типов электродвигателей. Двигатели специальной конструкции, построенные на базе асинхронного двигателя, характеризуются техническими параметрами, влияющими на их рабочие характеристики и адаптирующими их к различным требованиям и назначениям. Среди асинхронных двигателей специальной конструкции можно выделить следующие: многоскоростные двигатели — частота вращения двигателя изменяется изменением количества пар полюсов вращающегося магнитного поля; двигатели с короткозамкнутым ротором с повышенным пусковым моментом — используются для привода устройств с большим моментом инерции; моторы крановые — адаптированы к различным видам работ, используются для привода кранов и других подъемных устройств; двигатели с тормозом — используются в приводах, требующих быстрой остановки после рабочего цикла или после аварийного отключения питания; двигатели с повышенным скольжением — используются для привода механизмов с большой инерционностью, а также механизмов, работающих в повторно-кратковременном режиме; взрывозащищенные двигатели и т.д.

В бытовых электроприборах применяются однофазные электродвигатели с рабочим напряжением 220 вольт. Очень часто таким двигателем является однофазный асинхронный двигатель с короткозамкнутым ротором.

Устройство и принцип действия асинхронных электродвигателей

Ustroystvo i printsip deystviya asinkhronnykh elektrodvigateley

Всем привет. Рад вас видеть у себя на сайте. Тема сегодняшней статьи: устройство и принцип действия асинхронных электродвигателей. Так же я бы хотел немного сказать о способах регулировки их частоты вращения, и перечислить их основные преимущества и недостатки.

Раньше, я уже писал статьи, касающиеся асинхронных электродвигателей. Если кому интересно, то можете почитать. Вот список:

Ну а теперь давайте перейдём к теме сегодняшней статьи.

В нынешнее время, очень трудно представить, как бы существовали все промышленные предприятия, если бы не было асинхронных машин. Эти двигателя установлены практически везде. Даже дома у каждого человека есть такой двигатель. Он может стоять на вашей стиральной машинке, на вентиляторе, на насосной станции, в вытяжке и так далее.

Вообще асинхронный электродвигатель – это колоссальный прорыв в мировой промышленности. Во всём мире их выпускают более 90 процентов от количества всех выпускаемых двигателей.

asinkhronnyy elektrodvigatel

Асинхронный электродвигатель – это электрическая машина, которая преобразовывает электрическую энергию в механическую. То есть потребляет электрический ток, а взамен дают крутящий момент, с помощью которого можно вращать многие агрегаты.

А само слово «асинхронный» — означает неодновременных или не совпадающий по времени. Потому что у таких двигателей частота вращения ротора немного отстаёт от частоты вращения электромагнитного поля статора. Ещё это отставанием называют – скольжением.

Обозначается это скольжение буквой: S

А вычисляется скольжение по такой формуле: S = ( n1 — n2 )/ n1 — 100%

Где, n1 – это синхронная частота магнитного поля статора;

n2 – это частота вращения вала.

Устройство

Конструктивно синхронный электродвигатель состоит из неподвижного элемента, подвижной части, обмоток различного назначения, может комплектоваться коллекторным узлом. Далее рассмотрим каждую составляющую синхронного агрегата более детально на рабочем примере (рисунок 1).

  • Статор или якорь – выполняется из электротехнической стали монолитным или наборным из шихтованного железа. Предназначен для размещения рабочей обмотки, проводит силовые линии электромагнитного поля, формируемого протекающими токами.
  • Обмотка на статоре – изготавливается из медных проводников, в зависимости от типа статора синхронного электродвигателя может выполняться различными методами, способами намотки и расположения проводников. Применяется для подачи напряжения питания и формирования рабочего магнитного потока.
  • Ротор с обмоткой возбуждения – предназначен для взаимодействия с магнитным полем статора. В результате подачи напряжения на обмотку возбуждения в роторе электродвигателя создается собственное магнитное поле, задающее состояние вращающегося элемента.
  • Вал – используется для передачи вращательного усилия от электродвигателя к подключаемой к нему нагрузке. В большинстве случаев это основание, на котором крепиться шихтовка или полюса ротора, подшипники, кольца, пластины и другие вспомогательные элементы.
  • Контактные кольца – применяются для подачи питания на обмотки ротора, но устанавливаются не во всех моделях синхронных агрегатов. Питание производиться через специальный преобразователь переменного напряжения в постоянное.
  • Корпус – предназначен для защиты от воздействия внешних факторов, обеспечивает синхронному двигателю достаточную прочность и герметичность, в зависимости от условий его эксплуатации.

Устройство асинхронного электродвигателя.

Двигатель состоит из таких частей:

1. Статор с обмотками. Или станина внутри которой находится статор с обмотками.

2. Ротор. Это если короткозамкнутый. А если фазный, то можно сказать, что это якорь или даже коллектор. Я думаю, ошибки не будет.

3. Подшипниковые щиты. На мощных двигателях ещё спереди стоят подшипниковые крышки с уплотнителями.

4. Подшипники. Могут стоять скольжения или качения, в зависимости от исполнения.

5. Вентилятор охлаждения. Изготавливается из пластмассы или металла.

6. Кожух вентилятора. Имеет прорези для подачи воздуха.

7. Борно или клеммная коробка. Для подключения кабелей.

Это все его основные детали, но в зависимости от вида, типа и исполнения может немного изменяться.

dvigatel asinkhronnyy trekhfaznyy

Асинхронные электродвигателя в основном выпускают двух видов: трёхфазные и однофазные. В свою очередь трёхфазные ещё подразделяются на подвиды: с короткозамкнутым ротором или фазным ротором.

Самые распространённые – это трёхфазные с короткозамкнутым ротор.

Статор имеет круглую форму и набирается с листов специальной стали, которые изолированы между собой, и эта собранная конструкция образует сердечник с пазами. В пазы сердечника укладываются обмотки, со специального обмоточного, изолированного лаком провода. Провод это отливают в основном из меди, но также есть и с алюминия. Если двигатель очень мощный, то обмотки делаю шиной. Обмотки укладывают так, чтобы они были сдвинуты относительно друг друга на 120 градусов. Соединяются обмотки статора в звезду или в треугольник.

Ротор, как выше я уже писал выше, бывает короткозамкнутый или фазный.

Короткозамкнутый представляет собой вал, на который надеваются листы, из тоже специальной, стали. Эти наборные листы образую сердечник, в пазы которого заливают расплавленный алюминий. Этот алюминий равномерно растекается по пазам и образует стержни. А по краям эти стержни замыкают алюминиевыми кольцами. Получается своего рода «беличья клетка».

korotkozamknutyy rotor

Фазный ротор представляет собой вал с сердечником и тремя обмотками. Одни концы, которых обычно соединяют в звезду, а вторые три конца присоединяют к токосъемным кольцам. А на эти кольца, с помощью щёток подают электрический ток.

Если в цепь фазных обмоток добавить нагрузочный реостат, и при пуске двигателя увеличивать активное сопротивление, то таким способ можно уменьшить большие пусковые токи.

Принцип преобразования энергии

Среди электрических двигателей, применяемых во всех отраслях промышленности и бытовых электроприборах, наибольшее распространение имеют двигатели переменного тока. Они встречаются практически в каждой сфере жизнедеятельности – от детских игрушек и стиральных машин до автомобилей и мощных производственных станков.

Принцип работы всех электрических двигателей основывается на законе электромагнитной индукции Фарадея и законе Ампера. Первый из них описывает ситуацию, когда на замкнутом проводнике, находящемся в изменяющемся магнитном поле, генерируется электродвижущая сила. В двигателях это поле создается через обмотки статора, по которым протекает переменный ток. Внутри статора (представляющего собой корпус устройства) находится подвижный элемент двигателя – ротор. На нем и возникает ток.

Вращение ротора объясняется законом Ампера, который утверждает, что на электрические заряды, протекающие по проводнику, находящемуся внутри магнитного поля, действует сила, движущая их в плоскости, перпендикулярной силовым линиям этого поля. Проще говоря, проводник, которым в конструкции двигателя является ротор, начинает вращаться вокруг своей оси, а закрепляется он на валу, к которому подключаются рабочие механизмы оборудования.

Обзор конструкции

Три основные составляющие двигателя – ротор, статор и корпус. Кожух обеспечивает защитные функции, предупреждает повреждения на статоре и роторе. Также позволяет закрепить подвижную, стационарную часть асинхронной машины.

Статор размещен неподвижно в двигателе, содержит станину и магнитопровод. Под воздействием пресса магнитный проводник фиксируется к станине и формирует электромагнитное ядро. Магнитное поле, создаваемое в ядре, беспрерывно вращается. Тонкие листы магнитопровода выполнены из электротехнической листовой стали, крепление пластин способствует образованию пазов и зубцов статора. Шихтованный сердечник, выступающий дополнительным элементом статора, также создан из статорных пластин. Листы сердечника соединяются сваркой, прессом и кольцевыми шпонками – аналогично образован магнитопровод.

Обмотка ротора представлена короткозамкнутыми кольцами, внешне напоминающими колеса беличьих клеток. Включает латунные или медные стержни, приваренные к короткозамкнутым кольцам на торцах. Кольца вбиты в пазы. Статор и ротор разделен воздушной прослойкой.

Обмотка двигателей с фазным ротором в начале изолирована, концы припаяны к контактным кольцам, позволяющим подключить пуско-регулирующий реостат. Цепь ротора получает дополнительное сопротивление, дает возможность регулировать частоту вращения и уменьшения пусковых токов.

Строение асинхронного двигателя

Отличие асинхронного электродвигателя от синхронного

С виду внешне они похожи, порой даже специалист не отличит по внешним признакам синхронный электродвигатель от асинхронного. У обоих электродвигателей есть неподвижный статор, состоящий из обмоток (катушек), которые уложены в пазы сердечника, набранного из пластин, выполненных из электротехнической стали, и подвижный ротор. Кроме того, функция этих типов электродвигателей одна и та же — создание вращающегося магнитного поля статора.

Ротор синхронного двигателя имеет обмотку возбуждения с независимым питанием. Статоры синхронного и асинхронного двигателя устроены одинаково, функция в каждом случае одна и та же — создание вращающегося магнитного поля статора.

Обороты асинхронного двигателя под нагрузкой всегда на величину скольжения отстают от вращения магнитного поля статора, в то время как обороты синхронного двигателя равны по частоте «оборотам» магнитного поля статора. И поэтому у асинхронного двигателя есть такой параметр – как СКОЛЬЖЕНИЕ – разность скоростей вращения ротора и вращающегося магнитного поля в статоре. У синхронного электродвигателя частота вращения ротора всегда равна частоте вращения электромагнитного поля.

У этих двух типов двигателей разные области применения: синхронные электродвигатели отличаются гораздо большей мощностью и полезной нагрузкой, но они дороже и сложней. И поэтому асинхронные двигатели востребованы там, где достаточно их характеристик, ведь они дешевле и проще в изготовлении.

Принцип действия.

Когда на обмотки статора подаются электрический ток, то в этих обмотках возникает электрический поток. Как вы помните, из выше написанных слов, фазы у нас смещены относительно друг друга на 120 градусов. И вот этот поток в обмотках начинает вращаться.

И при вращении магнитного потока статора, в обмотках ротора появляется электрический ток, и своё магнитное поле. Два этих магнитных поля начинают взаимодействовать и заставляют вращаться ротор электродвигателя. Это если ротор короткозамкнутый.

По принципу роботы вот посмотрите видео ролик.

Ну а с фазным ротором, по сути, принцип тот же. Напряжение подаётся на статор и на ротор. Появляются два магнитных поля, которые начинают взаимодействовать и вращать ротор.

Трехфазный асинхронный двигатель. Принцип работы

Принцип действия асинхронного двигателя заключается во взаимном расположении обмоток и трехфазном напряжении, что приводит к возникновению вращающегося магнитного поля, которое и выступает движущей силой.

Подробнее говоря, при подаче питания на первичную обмотку, на фазах образуются три магнитных потока, изменяющихся в зависимости от частоты входного напряжения. Они смещены между собой не только в пространстве, но и во времени, благодаря чему и появляется вращающийся магнитный поток.

Во время вращения результирующий поток создает ЭДС в роторных проводниках. По причине того, что обмотка ротора представляет собой замкнутую цепь, в ней создается ток, создающий пусковой момент в направлении вращения магнитного поля статора. Это приводит к вращению ротора после превышения пусковым моментом его тормозного момента. Наблюдаемое в этот момент явление называется скольжением — величиной, показывающей в виде процентов соотношение частоты вращения магнитного поля к частоте вращения ротора.
соотношение частоты вращения магнитного поля к частоте вращения ротора
(n1 – частота магнитного поля статора; n2 – частота вращения ротора)

Скольжение является очень важным параметром. На старте его величина всегда равна 1 и, естественно, становится меньше по мере увеличения разности между n1 и n2, что сопровождается также уменьшением электродвижущей силы и вращающего момента. Во время работы на холостом ходу скольжение минимально и растет по мере увеличения статического момента. Достигнув критического скольжения (обозначается как sкр), может спровоцировать опрокидывание двигателя. После уравновешивания тормозного и электромагнитного момента изменения величин прекращаются.

Таким образом, принцип действия асинхронного двигателя основывается на взаимодействии магнитного поля ротора, находящегося во вращении, и токов, наведенных в роторе этим же полем. При этом обязательным условием возникновения вращающего момента является разница частот вращения полей.

Недостатки и преимущества двигателей

Синхронные двигатели

синхронный электродвигатель синхронный электродвигатель синхронный электродвигатель

Синхронные двигатели имеют довольно сложную конструкцию, обусловленную наличием щеточного узла. Кроме того, для их работы требуется дополнительный источник постоянного тока. Еще одним недостатком является невозможность их эксплуатации в условиях частых пусков и остановов. Однако все это компенсируется большой мощностью, высоким КПД, устойчивостью к перепадам напряжения в питающей сети и стабильной частотой вращения вала, вне зависимости от величины нагрузки на него.

Синхронные электрические машины рентабельны при мощностях свыше 100 кВт и основное применение находят для вращения мощных вентиляторов, на различных металлургических производствах, для привода насосов, которые обладают не только значительной мощностью, но и долгим режимом функционирования т.д.

Асинхронный двигатель

Асинхронный двигатель Асинхронный двигатель Асинхронный двигатель

Асинхронный двигатель в отличие от синхронных машин более чувствителен к колебаниям напряжения и не может сохранять номинальную скорость вращения, при увеличении нагрузки. В большинстве случаев недостатки компенсируются путем применения преобразователей частоты и других устройств пуска. Но простота конструкции, длительный срок эксплуатации, универсальность применения, способность работать в режиме частых включений и остановок делают эти машины наиболее распространенными в промышленном и бытовом секторе.

Ключевые преимущества

Преимущества эксплуатации асинхронных электродвигателей (АД) состоят в следующем:

  • Возможность прямого подключения к питающей сети без пускорегулирующих приборов при коэффициенте загрузки ≈1.
  • Самостоятельный запуск группы асинхронных двигателей одной или нескольких питающих секций при кратковременном обесточивании и последующем возобновлении питания под воздействием станционной автоматики.
  • Простота обслуживания и эксплуатации, доступная цена, высокая надежность, определяющая широкое применение в промышленности с целью привода механизмов, устойчивых к перепадам электроэнергии, пусковых показателей, скольжения.
  • Безотказная работа на участках, размещенных на высоте над уровнем моря 1 км, при диапазоне температур – 40°С и +40 °С, влажности воздуха при +25°С не более 98%, запыленности — 10 мг/м3.
  • Способность принимать различные механические перегрузки без существенных изменений КПД или нарушения стабильности работы.
  • Полная автоматизация работы.
  • Отсутствие необходимости проводить сложное и дорогостоящее обслуживание.
  • Асинхронным двигателем проводят комплектацию редукторов (червячных и цилиндрических). Механизм способствует уменьшению угловых скоростей вала и повышению крутящих моментов.
  • Широкий выбор конструкций. В зависимости от типа обмотки, различают асинхронные электродвигатели с короткозамкнутым и фазным ротором (с контактными кольцами).

По количеству используемых фаз устройства разделяют на одно-, двух-, трехфазные варианты.

Трехфазная обмотка обеспечивает лучшие пусковые характеристики и стабильную работу. Двухфазные электродвигатели оснащены двумя перпендикулярными обмотками статора, используемыми в однофазных сетях — одну обмотку соединяют напрямую с фазой, вторую питают фазосдвигающим конденсатором. Однофазный электродвигатель работает от пусковой катушки индуктивности, подключенной кратковременно через конденсатор к сети или замкнутой накоротко. Маломощные приборы выступают оптимальным вариантом для питания бытовых приборов.

Трехфазный асинхронный двигатель

Трехфазный асинхронный двигатель

Однофазный асинхронный двигатель

Фактически, любой асинхронный электродвигатель является трехфазным и предусматривает подключение к трехфазной сети с напряжением 380 В. Однофазным или двухфазным его называют при подключении к однофазной электросети с напряжением 200 В, когда питание подается лишь на две обмотки. В такой схеме на основную рабочую обмотку подается чистая фаза от сети, а на другую питание идет через фазосдвигающий элемент, как правило, конденсатор. Такая схема позволяет создать необходимую индукцию для смещения ротора и запустить асинхронный двигатель от однофазной сети. Для дальнейшей его работы даже необязательно, чтобы пусковая обмотка (которую подключают через конденсатор) оставалась под напряжением.

Дело в том, что трехфазный асинхронный двигатель продолжает функционировать (под малой нагрузкой) даже если во время работы от него отключить подачу энергии по одному из питающих проводов, сымитировав таким образом работу от однофазной сети. Это обусловлено тем, что результирующее магнитное поле сохраняет вращение.

История изобретения

Изобретение простейшего способа преобразования энергии из электрической в механическую принадлежит Майклу Фарадею. В 1821 году этот великий английский ученый провел эксперимент с проводником, опущенным в сосуд с ртутью, на дне которого лежал постоянный магнит. После подачи электричества на проводник он приходил в движение, вращаясь соответственно силовым линиями магнитного поля. В наши дни этот опыт часто проводят на уроках физики, заменяя ртуть рассолом.

Дальнейшее изучение вопроса привело к созданию Питером Барлоу в 1824 году униполярного двигателя, названного колесом Барлоу. В его конструкцию входят два зубчатых колеса из меди, расположенных на одной оси между постоянными магнитами. После подачи тока на колеса, в результате его взаимодействия с магнитными полями, колеса начинают вращаться. Во время опытов ученый установил, что направление вращения можно изменить, поменяв полярность (перестановкой магнитов или контактов). Практического применения «колесо Барлоу», но сыграло важную роль в изучении взаимодействия магнитных полей и заряженных проводников.

Первый рабочий образец устройства, ставшего прародителем современных двигателей, был создан русским физиком Борисом Семеновичем Якоби в 1834 году. Принцип использования вращающегося ротора в магнитном поле, продемонстрированный в этом изобретении, практически в неизменном виде применяется современных двигателях постоянного тока.

А вот создание первого двигателя с асинхронным принципом работы принадлежит сразу двум ученым – Николе Тесла и Галилео Феррарис, по удачному стечению обстоятельств продемонстрировавшим свои изобретения в один год (1888). Через несколько лет двухфазный бесколлекторный двигатель переменного тока, созданный Николой Тесла уже использовался на нескольких электростанциях. В 1889 году русский электротехник Михаил Осипович Доливо-Добровольский усовершенствовал изобретение Теслы для работы в трехфазной сети, благодаря чему смог создать первый асинхронный двигатель переменного тока мощностью более 100 Вт. Ему же принадлежит изобретение используемых сегодня способов подключения фаз в трехфазных электродвигателях: «звезда» и «треугольник», пусковых реостатов и трехфазных трансформаторов.

Система переменного тока

Отрицательные характеристики асинхронного двигателя

АД обладает перечисленными ниже недостатками:

  • Чувствительностью к перепадам напряжения.
  • Высокими пусковыми токами при низких коэффициентах скольжений.
  • Необходимостью использования преобразователей частоты, пусковых реостатов для улучшения характеристик электромотора.
  • Небольшими показателями синхронной частоты вращения — не превышает 3000 об/мин. Для увеличения скорости потребуется редуктор или турбопривод.
  • Сложной регулировкой производительности механизмов, вращающихся под воздействием асинхронного электродвигателя.

Асинхронные электродвигатели располагают приличной механической характеристикой. Несмотря на недостатки, они лидируют по показателям применения. Мощность двигателей серии АИР варьирует в пределах 0,06 и 400 кВт, высота оси вращения – 50-355 мм. Ток при максимальном напряжении — 0,55…5 А. КПД электродвигателя 66-83 %, что также является хорошим показателям для устройства с низкими эксплуатационными затратами.

Вид асинхронного двигателя

Преимущества асинхронных двигателей

Заложенный в асинхронный двигатель принцип работы даёт ряд преимуществ этому устройству:

  1. Простое устройство делает таковой экономичным в производстве.
  2. Низкое потребление энергии приводит к экономичности устройств, оснащённых таким двигателем.
  3. Универсальность применения в аппаратах, где не требуется точное поддержание частоты вращения или существует схема управления с обратной связью, обеспечивающая вращение с заданной частотой.
  4. Высокая надёжность в работе.
  5. Асинхронный двигатель может работать при однофазном подключении.

Чем отличается синхронный двигатель от асинхронного

Достоинства и недостатки асинхронных двигателей.

Основные достоинства асинхронного электродвигателя с короткозамкнутым ротором:

1. Очень простое устройство, что позволяет сократить затраты на его изготовление.

2. Цена намного меньше по сравнению с другими двигателями.

3. Очень простая схема запуска.

4. Скорость вращения вала практически не меняется с увеличением нагрузки.

5. Хорошо переносит кратковременные перегрузы.

6. Возможность подключения трёхфазных двигателей в однофазную сеть.

7. Надёжность и возможность эксплуатировать практически в любых условиях.

8. Имеет очень высокий показатель КПД и cos φ.

Недостатки:

1. Не возможности контролировать частоту вращения ротора без потери мощности.

2. Если увеличить нагрузку, то уменьшается момент.

3. Пусковой момент очень мал по сравнению с другими машинами.

4. При недогрузе увеличивается показатель cos φ

5. Высокие показатели пусковых токов.

Достоинства двигателей с фазным ротором:

1. По сравнению с короткозамкнутыми двигателями, имеет достаточно большой вращающий момент. Что позволяет его запускать под нагрузкой.

2. Может работать с небольшим перегрузом, и при этом частота вращения вала практически не меняется.

3. Небольшой пусковой ток.

4. Можно применять автоматические пусковые устройства.

Недостатки:

1. Большие габариты.

2. Показатели КПД и cos φ меньше, чем у двигателей с короткозамкнутым ротором. И при недогрузе эти показатели имеют минимальное значение

3. Нужно обслуживать щёточный механизм.

На этом буду заканчивать свою статью. Если она была вам полезной, то поделитесь нею со своими друзьями в социальных сетях. Если есть вопросы, то задавайте их в комментариях и подписывайтесь на обновления. Пока.

С уважением Александр!

Читайте также статьи:

Хочешь получать статьи этого блога на почту?

Очень все подробно написано, спасибо! Я всегда слабо разбирался в двигателях, но у Вас хорошее и понятное изложение.

Не мешало бы в статью добавить изобретателя электродвигателя великого английского ученого Майкла Фарадея. Ведь это именно он назвал электродвигатель преобразователем электрической энергии в механическую.

Кстати, Майкл Фарадей был химиком, а такие изобретения обычно присущи физикам.

В статье историю создания электродвигателя, я не затрагивал. Об этом может напишу позже, в отдельной статье.

Асинхронный двигатель изобрел русский ученый Доливо-Добровольский.

«Напряжение подаётся на статор и на ротор.»

Нет. Тут вы неправы. За это я и не люблю всяческих «блогеров». Пишут о том, в чем сами не разбираются.

Дмитрий, внимательно читайте статью. Там написано, что это в случае с фазным ротором. А я люблю таких комментаторов, которые приходят и начинают умничать и при этом совсем не понимают о чём идёт речь в статье.

Разновидности

В современной промышленности и бытовых приборах синхронные электродвигатели используются для решения самых разнообразных задач. Как результат, существенно разнятся и их конструктивные особенности. На практике выделяют несколько критериев, по которым разделяются виды синхронных агрегатов. В соответствии с ГОСТ 16264.2-85 могут подразделяться по таким техническим характеристикам:

  • питающему напряжению;
  • частоте рабочего напряжения;
  • количеству оборотов.

В зависимости от способа получения поля ротора выделяют такие типы синхронных электродвигателей:

  • С обмоткой возбуждения на роторе – синхронизирующее усилие создается за счет подачи питания от преобразователя.
  • С магнитным ротором – на валу устанавливается постоянный магнит, выполняющий те же функции, что и обмотка возбуждении, но без необходимости подпитки (см. рисунок 6).

С реактивным ротором — конструкция выполнена таким образом, что в его сердечнике происходит преломление магнитных линий, приводящее всю конструкцию в движение (см. рисунок 7). Под воздействием силового поля поперечные и продольные составляющие в роторе не равны за счет чего пластины поворачиваются вслед за полем.

Пример реактивного ротора

Рис. 7. Пример реактивного ротора

В зависимости от наличия полюсов все синхронные электродвигатели можно подразделить на:

  • явнополюсные – в конструкции четко видны обособленные полюса с обмотками, применяются для малых скоростей;
  • неявнополюсные – полюс не выделяется, такие модели устанавливают для высоких скоростей;

В зависимости от расположения рабочих обмоток различают прямые (на статоре) и обращенные (рабочие обмотки на роторе).

Подключение к однофазным и трехфазным источникам питания

По типу питающей сети электродвигатели переменного тока классифицируют на одно- и трехфазные.

Подключение асинхронных однофазных двигателей осуществляет очень легко – для этого достаточно подвести к двум выходам на корпусе фазный и нулевой провод однофазной 220В сети. Синхронные двигатели тоже можно запитывать от сети данного типа, однако подключение немного сложнее – необходимо соединить обмотки ротора и статора так, чтобы их контакты однополюсного намагничивания были расположены напротив друг друга.

Подключение к трехфазной сети представляется несколько более сложным. В первую очередь, следует обратить внимание, что клеммная коробка содержит 6 выводов – по паре на каждую из трех обмоток. Во-вторых, это дает возможность использовать один из двух способов подключения («звезда» и «треугольник»). Неправильное подключение может привести в поломке двигатель от расплавления обмоток статора.

Главное функциональное отличие «звезды» и «треугольника» заключается в различном потреблении мощности, что сделано для возможности включения машины в трехфазные сети с различным линейным напряжением — 380В или 660В. В первом случае следует соединять обмотки по схеме «треугольник», а во втором – «звездой». Такое правило включения позволяет в обоих случаях иметь напряжение 380В на обмотках каждой фазы.

На панели подключения выводы обмоток располагаются таким образом, чтобы перемычки, используемых для включения, не перекрещивались между собой. Если коробка выводов двигателя содержит только три зажима, значит, он рассчитан для работы от одного напряжения, которое указано в технической документации, а обмотки соединены между собой внутри устройства.

Основные технические характеристики

В зависимости от класса электродвигателя, его технические характеристики меняются. В рамках данной статьи не ставится задача приведения параметров всех существующих классов двигателей. Мы остановимся на описании основных технических характеристик для электромоторов классов 56 А2 – 80 В2.

В этом небольшом промежутке на линейке моделей эелектромоторов с короткозамкнутыми роторами можно отметить следующее:

Мощность составляет от 0,18 кВт (класс 56 А2) до 2,2 кВт (класс 80 В2).

Ток при максимальном напряжении – от 0,55 А до 5А.

КПД от 66% до 83%.

Частота вращения вала для всех моделей из указанного промежутка составляет 3000 об./мин.

Технические характеристики конкретного двигателя указаны в его паспорте.

Рекомендации по выбору устройства

Решив купить асинхронный электродвигатель, важно правильно определить обороты на выходе, мощность, посадочные параметры по лапам или габариты фланца, диаметр вала. Дополнительного внимания заслуживают стандарты моторов.

Большинство потребителей отдает предпочтение европейским стандартам, благодаря разнообразному выбору. Также многие пользователи принципиально ищут импортные двигатели для использования в узкоспециальной среде: для постоянного тока, тельферов, приводов станков с ЧПУ. Однако отечественные электромоторы купить гораздо проще, в случае поломки не потребуется долгий поиск для замены деталей.

Сферы применения

Без асинхронных машин с короткозамкнутым ротором не может обойтись ни промышленность, ни транспорт, ни быт и др. Они используются практически везде. Это и электроприводы дымососов, подъемных кранов, шаровых мельниц, насосов, лебедок, дробилок, станков, бытовой техники. При необходимости ступенчатого изменения скорости (в тех же лифтах) пользуются многоскоростными асинхронными двигателями. Где требуется быстро остановиться и зафиксировать вал, когда исчезает напряжение, не обойтись без асинхронных двигателей с электромагнитным стопором (станки, лебедки). Асинхронные двигатели с большой величиной скольжения хорошо справляются с повторно-кратковременными режимами и при пульсации нагрузки.Широкое применение находится и линейным асинхронным двигателям из-за простого производства и хорошей надежности. Однофазными машинами оборудуются небольшие устройства (бытовые вентиляторы, мини-помпы и др.). Наиболее эффективны 2-х фазные асинхронные машины, когда их питание идет от однофазной сети переменного тока. Другое их название – конденсаторные двигатели, поскольку без фазосдвигающего конденсатора они не могут работать.Трехфазные электромашины устанавливаются на станочное оборудование, тали, пилорамы, строительные краны и др. У 3-х фазных асинхронных машин с фазным ротором цена выше, чем у машин с короткозамкнутым ротором, но их пусковые нагрузочные моменты намного больше. Поэтому эти двигатели составляют привода на лифтах и подъемных кранах, т. е. там, где требуется запуск в условиях нагрузки.

Читайте Асинхронный двигатель

Схемы подключения

Для того чтобы подключить трехфазный асинхронный двигатель используют несколько различных схем, но чаще всего применяются «треугольник» и «звезда».

Треугольник

Преимущество данной схемы заключается в том, что при подключении согласно ей трехфазный двигатель может развивать наибольшую номинальную мощность. Для этого обмотки соединяются по принципу конец-начало, что на схематичном изображении похоже на треугольник, однако в виде треугольника понять что к чему, не всегда удобно. По этому предлагаем для анализа схему снизу, а затем фотографию уже в сборе (еще ниже).

схема подключения "треугольник"

В трехфазных электрических сетях величина линейного напряжения между выводами обмоток составляет 380 В. При этом нет необходимости создания рабочего нуля. Важно отметить, что в такой схеме может возникнуть большой пусковой ток, значительно перегружающий проводку.

Звезда

Этот способ подключения является наиболее используемым в сетях с трехфазным током 380 В. Название схемы связано с тем, что концы обмоток соединяются в одной точке, словно звездные лучи. Начала обмоток подключаются посредством аппаратуры коммутации к фазным проводникам. В такой конструкции линейной напряжение между начал составляет 380 В, а между местом соединения и подключения проводника – 200 В. Ниже представлена схема, а еще ниже уже фотография в собранном виде.

схема подключения "звезда"

Трехфазный двигатель для 380 В сетей, подключенный таким образом, не способен развить максимальную силу из-за того, что напряжение на каждой обмотке составляет 220 В. В свою очередь, такая схема предотвращает возникновение перегрузок по току, чем обеспечивается плавный пуск.

Возможность подключения двигателя тем или иным способом, как правило, указывается на его табличке. Значок Y означает «звезду», а ∆ — «треугольник». Определить схему на уже подключенной машине можно по виду обмоток – одна двойная перемычка между ними говорит, что использована «звезда» (первое фото снизу), а если между клеммами обмоток видно три перемычки – «треугольник» (первое фото сверху).

Асинхронный двигатель, треугольник в сборе

Асинхронный двигатель, звезда в сборе

В случае, когда необходимо запустить трехфазный асинхронный электродвигатель в обратном направлении вращения, следует поменять два питающих провода от трехфазного источника местами.

Преимущества и недостатки электрических двигателей переменного тока

В наши дни среди всех электродвигателей устройства для переменного тока занимают лидирующую позицию по объему использования в силовых установках. Они обладают низкой себестоимостью, простой в обслуживании конструкцией и КПД не менее 90%. Кроме того, их устройство позволяет плавно изменять скорость вращения, не прибегая к помощи дополнительного оборудования вроде коробок передач.

Главным недостатком двигателей переменного тока с асинхронным принципом работы является тот факт, что регулировать их частоту вращения вала можно только изменяя входную частоту тока. Это не позволяет добиться постоянной скорости вращения, а также снижает мощность. Для асинхронных электродвигателей характерны высокие пусковые токи, но низкий пусковой момент. Для исправления этих недостатков применяется частотный привод, однако его цена противоречит одному из главных достоинств этих двигателей – низкой себестоимости.

Слабым местом синхронного двигателя является его сложная конструкция. Графитовые щетки довольно быстро выходят из строя под нагрузкой, а также теряют плотный контакт с коллектором из-за ослабления прижимной пружины. Кроме того, эти двигатели, как и асинхронные аналоги, не защищены от износа подшипников вала. К недостаткам также относится более сложный пуск, необходимость наличия источника постоянного тока и исключительно частотная регулировка частоты вращения.

Подключение

Статорные обмотки трёхфазного АДКР можно подключать по схеме «треугольник» либо «звезда». При этом для звёздочки требуется напряжение выше, чем для треугольника.

Обратите внимание на то, что электродвигатель, подключенный разными способами к одной и той же сети, потребляет разную мощность. Поэтому нельзя подключать электромотор, рассчитанный на схему «звезда» по принципу треугольника. Но с целью уменьшения пусковых токов можно коммутировать на время пуска контакты звезды в треугольник, но тогда уменьшится и пусковой момент.

Схемы включения понятны из рисунка 4.

Схемы подключения

Рис. 4. Схемы подключения

Для подключения трёхфазного электрического двигателя к однофазному току применяют фазосдвигающие элементы: конденсаторы, резисторы. Примеры таких подключений смотрите на рисунке 5. Можно использовать как звезду, так и треугольник.

Рис. 5. Примеры схем подключений в однофазную сеть

С целью управления работой двигателя в электрическую цепь статора подключаются дополнительные устройства.

Недостатки асинхронных двигателей

Есть у электродвигателей такой конструкции и свои недостатки. К ним можно отнести потери на тепло. Они, действительно, могут перегреваться, особенно – под нагрузкой. Для этого их корпуса нередко делают ребристыми – чтобы они лучше излучали тепло в окружающее пространство. Также асинхронный прибор часто снабжается сидящим на том же валу вентилятором для обдува ротора, потому что корпус может отводить тепло только от статора, так как воздушного зазора между ними нет, чего не скажешь о роторе.

Невозможность стабильно держать частоту вращения делает асинхронный двигатель неприменимым в некоторых устройствах.

Способы пуска и схемы подключения

Для запуска синхронного электродвигателя требуется дополнительное поле, независимое от воздействия сети. В то же время, на стартовом этапе запуск представляет собой асинхронный процесс, пока агрегат не достигнет синхронной скорости.

Схема пуска синхронного двигателя

Рис. 8. Схема пуска синхронного двигателя

При подаче напряжения на якорь возникает ток в его обмотках и генерация ЭДС в железе ротора, который обеспечивает асинхронное движение до того момента, пока не начнется питание обмоток возбуждения.

Еще одним распространенным вариантом пуска является использование дополнительных генераторов, которые могут располагаться на валу или устанавливаться отдельно. Такой метод обеспечивает дополнительное стартовое усилие за счет стороннего крутящего момента.

Генераторный способ пуска синхронного двигателя

Рис. 9. Генераторный способ пуска синхронного двигателя

Как видите на рисунке 9, начальное вращение мотора М осуществляется за счет генератора G, который призван вывести устройство на подсинхронную скорость. Затем генератор выводится из рабочей цепи путем размыкания контактов КМ или автоматически при установке рабочих характеристик. Дальнейшее поддержание синхронного режима происходит за счет подачи постоянного напряжения в обмотку возбуждения.

Помимо этого на практике используется схема пуска с полупроводниковыми преобразователями. На рисунке 10 приведен способ тиристорного преобразователя и с установкой вращающихся выпрямителей.

Тиристорная схема пуска синхронного двигателя

Рис. 10. Тиристорная схема пуска синхронного двигателя

В первом случае запуск синхронного электродвигателя характеризуется нулевым напряжением от преобразователя UD. За счет ЭДС скольжения через стабилитроны VD осуществляется открытие тиристоров VS. В цепь обмотки возбуждения вводится резистор R, предназначенный для предотвращения пробоя изоляции. По мере разгона электродвигателя ЭДС скольжения пропорционально снизится и произойдет запирание стабилитронов VD, цепочка заблокируется, и обмотка возбуждения получит питание постоянным напряжением через UD.

Функциональные и эксплуатационные особенности

Характерные преимущества асинхронных двигателей:

  • В их конструкции нет коллекторных групп, которые увеличивают износ других видов двигателей за счет дополнительного трения.
  • Питание асинхронных электрических машин не требует использования преобразователей и может осуществляться промышленной трехфазной сети.
  • Из-за меньшего количества деталей и конструктивных элементов они относительно легко обслуживаются и имеют большой срок службы.

Среди недостатков можно отметить:

  • Сфера применения асинхронных двигателей несколько ограничена из-за малого пускового момента.
  • Высокая реактивная мощность, которую они потребляют во время работы, не оказывает влияние на механическую мощность.
  • Большие пусковые токи, потребляемые на пуске этих двигателей, могут превышать допустимые значения некоторых систем.

Применение

Область применения синхронных электрических машин охватывает производство электрической энергии на электростанциях. По видам генераторы подразделяются на турбинные, дизельные и гидравлические, в зависимости от способа приведения их во вращение.

Также их используют в качестве электродвигателей, которые могут переносить существенные перегрузки в процессе эксплуатации. Такие двигатели устанавливаются на вентиляторах, компрессорах, силовых агрегатах и прочем оборудовании. Отдельная категория электродвигателей применяется в точном оборудовании, где важна синхронизация операций и процессов.

Как производятся расчеты

Для того чтобы вычислить частоту вращения двигателя следует воспользоваться определенной нам ранее формулой скольжения:

формула скольжения

И выразить из нее скорость вращения ротора:

скорость вращения ротора

В качестве примера возьмем двигатель модели АИР71А4У2 мощностью в 550 Вт с 4 парами полюсов и частотой вращения ротора 1360 об/мин.

При питании от сети с частотой 50 Гц статор будет вращаться со скоростью:

скорость вращения

Таким образом, величина скольжения электродвигателя составляет:

 величина скольжения электродвигателя составляет

И, наконец, прекрасное, хотя и устаревшее, видео рекомендуемое всем для одноразового просмотра.

Определение и немного истории

Автором асинхронного двигателя считают Михаила Осиповича Доливо-Добровольского, который в 1889 году получил патент на двигатель с ротором типа «Беличья клетка», а в 1890 году на двигатель с фазным ротором, которые без особых изменений в конструкции используются и сегодня. А первые исследования и наработки в этом направлении были проведены в 1888 Галилео Феррарисом и Николой Тесла независимо друг от друга.

Главным отличием разработки Доливо-Добровольского от разработок Теслы было использование трёхфазной, а не двухфазной конструкции статора. Демонстрация первых двигателей состоялась на Международной электротехнической выставке во Франкфурте на Майне в сентябре 1891 года. Там представили три трёхфазных асинхронных электродвигателя, самый мощный из которых был на 1.5 кВт. Конструкция этих машин оказалась настолько удачно, что не пережила весомых изменений до наших дней.

Преимущества и недостатки

К преимуществам такого электродвигателя следует отнести:

  • высокий cosφ, приближающийся по величине к 1, что в значительной мере превосходит асинхронные электродвигатели;
  • более высокая механическая прочность за счет особенностей конструкции электродвигателя;
  • зависимость момента вращения от напряжения линейная, а не квадратичная, поэтому колебания электродвигателя пропорционально снижаются;
  • на валу электродвигателя присутствует постоянная скорость, не зависящая от прикладываемой нагрузки;
  • может применяться для уменьшения реактивной составляющей в сети.

Среди недостатков синхронных электродвигателей выделяют:

Оцените статью
Рейтинг автора
4,8
Материал подготовил
Егор Новиков
Наш эксперт
Написано статей
127
А как считаете Вы?
Напишите в комментариях, что вы думаете – согласны
ли со статьей или есть что добавить?
Добавить комментарий